

Water Supplies Department New Works Branch Consultants Management Division 6/F Sha Tin Government Offices 1 Sheung Wo Che Road Sha Tin New Territories

Your reference:

Our reference:HKWSD202/50/107903Date:21 March 2022

Attention: Mr W K Lau/ Mr H L Lai

BY EMAIL & POST (email: simon_wk_lau@wsd.gov.hk/ jack_hl_lai@wsd.gov.hk)

Dear Sirs

Agreement No. CE 5/2019 (EP) Independent Environmental Checker for First Stage of Tseung Kwan O Desalination Plant – Investigation Verification of Monthly EM&A Report No.24 (February 2022)

We refer to emails of 8 and 18 March 2022 attaching Monthly EM&A Report No.24 (February 2022) for the captioned project prepared by the ET.

We have no further comments and hereby verify the captioned report in accordance with Clause 3.5 of the Environmental Permit no. EP-503/2015/A and Further Environmental Permit no. FEP-01/503/2015/A.

Should you have any queries regarding the above, please do not hesitate to contact the undersigned on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

Louis Kwan Independent Environmental Checker

KSYL/lsmt

Unit E, 12/F, Ford Glory Plaza Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon.

Website:www.acuityhk.com

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

Monthly EM&A Report No.24 (Period from 1 February to 28 February 2022)

	Document No.								
ASCL / 200168078 / MEMAR24 / A									
	Publisher		Project Code		Sequential No.		Revision Index		
							muex		

	Prepared by:	Reviewed and Certified by:
Name	Howard Chan	Jacky LEUNG
Position	Environmental Team Member	Environmental Team Leader
Signature	Howard	h
Date:	08/03/2022	08/03/2022

REVISION HISTORY

R	EV.	Description of Modification	DATE		
	A	First Issue for Comments	8 March 2022		

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Monthly EM&A Report No.24

CONTENTS

Execut	ive Summary1
1.	Basic Contract Information
2.	Noise9
3.	Water Quality15
4.	Waste
5.	Landfill Gas Monitoring
AND	SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS PROSECUTIONS
7.	EM&A Site Inspection
	Future Key Issues
9.	Conclusions and Recommendations

Appendix A	Master Programme

Appendix B	Overview of Desalination Plant in Tseung Kwan O
------------	---

- Appendix C Summary of Implementation Status of Environmental Mitigation
- Appendix D Impact Monitoring Schedule of the Reporting Month
- Appendix E Event/Action Plan for Noise Exceedance
- Appendix F Noise Monitoring Equipment Calibration Certificate (Blank)
- Appendix G Event/Action Plan for Water Quality Exceedance
- Appendix H Waste Flow Table
- Appendix I Site Inspection Proforma
- Appendix J Complaint Log
- Appendix K Impact Monitoring Schedule of Next Reporting Month
- Appendix L Water Quality and Landfill Gas Monitoring Data
- Appendix M HOKLAS Laboratory Certificate
- Appendix N Water Quality and Landfill Gas Equipment Calibration Certificate
- Appendix 0 Exceedance Report(s)

EXECUTIVE SUMMARY

INTRODUCTION

- A1. The Project, Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (EP No. FEP 01/503/2015/A) for the construction and operation of the Contract.
- A2. In accordance with the Environmental Monitoring and Audit (EM&A) Manual for the Contract, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Contract.
- A3. This is the 24th Monthly EM&A Report, prepared by ASCL, for the Contract summarizing the monitoring results and audit findings of the EM&A programme at and around Tseung Kwan O Area 137 (TKO 137) during the reporting period from 1 February 2022 to 28 February 2022.
- A4. The EM&A programme for this contract has covered environmental monitoring on construction noise level at selected NSRs and Contractor's environmental performance auditing in the aspects of construction dust, construction noise, water quality, waste management, Landscape and Visual and Ecology.

SUMMARY OF MAIN WORKS UNDERTAKEN & KEY MITIGATION MEASURES IMPLEMENTED

- A5. Key activities carried out in this reporting period for the Contract included the followings:
 - Land Survey;
 - Construction of solar panel supports at roof of ActiDAFF;
 - Construction of Reverse Osmosis (RO) Building staircases and internal finishing;
 - Construction of sludge thickener, Post Treatment Building (PTB);
 - Construction of On-Site Chlorine Generation Building (OSCG Bldg);
 - Internal finishing work at Product Water Storage Tank (PWST), Main Electrical & Central Chiller Plant Building;
 - Manhole construction and Glass Reinforced Plastic (GRP) pipe installation;
 - Construction of manholes no.15 and no.16 adjacent to ActiDAFF and RO;
 - Construction of 1/F to 2/F walls and columns of Administration Building;
 - Construction of reinforced concrete (RC) support of Inspection Corridor;
 - Construction of structural wall and Roof of Chemical Building;
 - Outfall Shaft Dewatering; Predrill, Rock cutting and excavations;
 - Intake shaft Idling;
 - Pipe jacking at Combined Shaft for Outfall pipelines;

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- Intake tunnel Demobilize the jack pipe system and commencement of grouting works;
- E&M works ActiDaff scaffolding, installation of E&M piping;
- E&M works Reverse Osmosis (RO) Building Fire services installation;
- A6. The major environmental impacts brought by the above construction works include:
 - Construction dust and noise generation from marine construction works, excavation works, construction works, rock cutting works and pipe piling driving works
 - Waste generation from the construction activities
 - Impact on water quality from marine construction works and inland construction works
- A7. The key environmental mitigation measures implemented for the Contract in this reporting period associated with the above construction works include:
 - Dust suppression by regular wetting and water spraying for construction works;
 - Reduction of noise from equipment and machinery on-site and regular inspection to machinery and plants/vehicles on-site to ensure proper functioning;
 - Sorting and storage of general refuse and construction waste; and
 - Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge.

SUMMARY OF EXCEEDANCE & INVESTIGATION & FOLLOW-UP

- A8. No noise monitoring was conducted during the reporting period since there are no Contract -related construction activities undertaken within a radius of 300m from the monitoring locations. No contract-related exceedance of the Action Level was recorded during the reporting period.
- A9. The EM&A works for water quality were conducted during the reporting period in accordance with the EM&A Manual.
- A10. Fifty-four (54) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. Thirty-eight (38) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level.
- A11. Details of the exceedance are presented in **Appendix 0**.

- A12. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 4, 8, 10, 12, 15, 17, 19, 22. 24 and 26 February 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix O**.
- A13. It was concluded that all exceedances recorded in February were unrelated to the Contract.
- A14. In this reporting period, 18 times of landfill gas monitoring were recorded at Wan Po Road (Ch1+625 Ch1+513). No exceedance of action and limit levels for methane, oxygen and carbon dioxide was observed. Monitoring was conducted during excavations at 1m depth or more within the consultation zone and whenever workers entered the excavation on the day.
- A15. Joint site inspections of the construction work by ET and IEC were carried out on 8, 17, 23 and 28 February 2022 to audit the mitigation measures implementation status. Observations were recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

COMPLAINT HANDLING AND PROSECUTION

- A16. No environmental complaint was received during the reporting period.
- A17. Neither notification of summons nor prosecution was received for the Contract.

REPORTING CHANGE

A18. There was no change to be reported that may affect the on-going EM&A programme.

SUMMARY OF UPCOMING KEY ISSUES AND KEY MITIGATION MEASURES

- A19. Key activities anticipated in the next reporting period for the Contract will include the followings:
 - Land Survey;
 - Construction of solar panel supports at roof of ActiDAFF;
 - Construction of Reverse Osmosis (RO) Building staircases and internal finishing;
 - Construction of sludge thickener, Post Treatment Building (PTB);
 - Construction of On-Site Chlorine Generation Building (OSCG Bldg);
 - Internal finishing work at Product Water Storage Tank (PWST), Main Electrical & Central Chiller Plant Building;
 - Manhole construction and Glass Reinforced Plastic (GRP) pipe installation;
 - Construction of manholes no.15 and no.16 adjacent to ActiDAFF and RO;
 - Construction of 1/F to 2/F walls and columns of Administration Building;
 - Construction of reinforced concrete (RC) support of Inspection Corridor;

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- Construction of structural wall and Roof of Chemical Building;
- Outfall Shaft Dewatering; Predrill, Rock cutting and excavations;
- Intake shaft Idling;
- Pipe jacking at Combined Shaft for Outfall pipelines;
- Intake tunnel Demobilize the jack pipe system and commencement of grouting works;
- E&M works ActiDaff scaffolding, installation of E&M piping;
- E&M works RO- Fire services installation;
- E&M works CO2 tank area installation of Silos; and
- E&M works Chiller Building installation of chillers;

A20. The major environmental impacts brought by the above construction works will include:

- Construction dust and noise generation from pipe jacking works, rock cutting works, drilling, excavation and construction works;
- Waste generation from construction activities; and
- Impact on water quality from marine construction works and inland construction works.
- A21. The key environmental mitigation measures for the Contract in the coming reporting period associated with the above construction works will include:
 - Dust suppression by regular wetting and water spraying for construction works;
 - Reduction of noise from equipment and machinery on-site;
 - Sorting and storage of general refuse and construction waste; and
 - Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge.

1. BASIC CONTRACT INFORMATION

BACKGROUND

- 1.1. The Acciona Agua, S.A. Trading, Jardine Engineering Corporation, Limited and China State Construction Engineering (Hong Kong) Limited As AJC Joint Venture (AJCJV) is contracted to carry out the Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (DPTKO) under Contract No. 13/WSD/17 (the Contract).
- 1.2. Acuity Sustainability Consulting Limited (ASCL) is commissioned by AJCJV to undertake the Environmental Team (ET) services as required and/or implied, both explicitly and implicitly, in the Environmental Permit (EP), Environmental Impact Assessment Report (EIA Report) (Register No. AEIAR-192/2015) and Environmental Monitoring and Audit Manual (EM&A Manual) for the Contract; and to carry out the Environmental Monitoring and Audit (EM&A) programme in fulfillment of the EIA Report's EM&A requirements and Contract No. 13/WSD/17 Specification requirements.
- 1.3. Pursuant to the Environmental Impact Assessment Ordinance (EIAO), the Director of Environmental Protection granted the Environmental Permit (No. EP-01/503/2015) and Variation of Environmental Permit (No. EP-01/503/2015/A) to Water Supplies Department (WSD); and granted the Further Environmental Permit (No. FEP-01/503/2015/A) to AJCJV for the Contract.

THE REPORTING SCOPE

1.4. This is the 24th Monthly EM&A Report for the Contract which summarizes the key findings of the EM&A programme during the reporting period from 1 February to 28 February 2022.

CONTRACT ORGANIZATION

1.5. The Contract Organization structure for Construction Phase is presented in **Figure 1.1**.

Figure 1.1 Contract Organization Chart

1.6. Contact details of the key personnel are presented in **Table 1.1** below:

Party	Position	Name	Telephone no.
Contract Proponent (Water Supplies Department)	SE/CM2	Benny Lam	2634-3573
Supervising Officer	Project Manager	Christina Ko	2608-7302
(Binnies Hong Kong Limited)	Chief Resident Engineer	R_{0} Roger Will R_{3}	
The Jardine Engineering Corporation,	Project Manager	Stephen Yeung	2807-4665
Limited, China State Construction Engineering (Hong Kong) Limited and Acciona Agua, S.A. Trading	Environmental Monitoring Manager	Brian Kam	9456-9541
Acuity Sustainability Consulting Limited	Environmental Team Leader	Jacky Leung	2698-6833
ANewR Consulting Limited	Independent Environmental Checker (IEC)	Louis Kwan	2618-2831

Table 1.1Contact Details of Key Personnel

SUMMARY OF CONSTRUCTION WORKS

- 1.7. Details of the major construction activities undertaken in this reporting period are shown as below. The construction programme is presented in **Appendix A**.
- 1.8. Key activities carried out in this reporting period for the Contract included the followings:
 - Land Survey;
 - Construction of solar panel supports at roof of ActiDAFF;
 - Construction of Reverse Osmosis (RO) Building staircases and internal finishing;
 - Construction of sludge thickener, Post Treatment Building (PTB);
 - Construction of On-Site Chlorine Generation Building (OSCG Bldg);
 - Internal finishing work at Product Water Storage Tank (PWST), Main Electrical & Central Chiller Plant Building;
 - Manhole construction and Glass Reinforced Plastic (GRP) pipe installation;
 - Construction of manholes no.15 and no.16 adjacent to ActiDAFF and RO;
 - Construction of 1/F to 2/F walls and columns of Administration Building;

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- Construction of reinforced concrete (RC) support of Inspection Corridor;
- Construction of structural wall and Roof of Chemical Building;
- Outfall Shaft Dewatering; Predrill, Rock cutting and excavations;
- Intake shaft Idling
- Pipe jacking at Combined Shaft for Outfall pipelines;
- Intake tunnel Demobilize the jack pipe system and commencement of grouting works
- E&M works ActiDaff scaffolding, installation of E&M piping;
- E&M works Reverse Osmosis (RO) Building Fire services installation
- 1.9. A summary of the valid permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Table 1.2 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Permit/ Licenses/ Notification	Reference	Validity Period
Environmental Permit	FEP – 01/503/2015/A	Throughout the Contract
Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation (Form NA)	Ref. No.: 451539	Throughout the Contract
Billing Account for Disposal of Construction Waste	7036276	Throughout the Contract
Chemical Waste Producer Registration	5213-839-A2987-01	Throughout the Contract
Wastewater Discharge Licence (Land and Marine works)	WT00035775-2020	23/08/2021 - 31/07/2025
Construction Noise Permit (24 hrs) – CNP for general works, TBM at Combined Shaft and marine works	GW-RE1041-21	01/11/2021 - 30/04/2022
Vessel CHITs for fill disposal	7039300	20/01/2022 - 20/04/2022
Dumping at Sea Ordinance (DASO) Permit to dump materials (Category L) at sea	EP/MD/22-028	02/08/2021 - 01/02/2022

1.10. The status for all environmental aspects is presented in **Table 1.3**.

Table 1.3 Summary of Status for Key Environmental Aspects under the EM&A Manual

Parameters	Status
Water Quality	
Baseline Monitoring under EM&A	The baseline water quality monitoring was
Manual	conducted between 12 May 2020 to 6 Jun 2020
Impact Monitoring	On-going
Noise	
Baseline Monitoring	The baseline noise monitoring result has been
	reported in Baseline Monitoring Report and
	submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going
Waste Management	
Mitigation Measures in Waste	On-going
Management Plan	
Landfill Gas	
Regular Monitoring when	In this reporting period, 18 time of landfill gas
Construction Works are within the	monitoring was recorded at Wan Po Road
250m Consultation Zone	(Ch1+625 – Ch1+513). No exceedance of action
	and limit levels for methane, oxygen and carbon
	dioxide was observed. Monitoring was conducted
	during excavations at 1m depth or more within the
	consultation zone and whenever workers entered
	the excavation on the day.
Environmental Audit	
Site Inspection covering Measures of	On-going
Air Quality, Noise Impact, Water	
Quality, Waste, Ecological Quality,	
Fisheries, Landscape and Visual	

- 1.11. Other than the EM&A work by ET, environmental briefings, trainings and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.12. The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the EM&A Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Contract during the reporting period is provided in **Appendix C**.

2. NOISE

MONITORING REQUIREMENTS

- 2.1. To ensure no adverse noise impact, noise monitoring is recommended to be carried out within 300m radius from the nearby noise sensitive receivers (NSRs), during construction phase. The NSRs selected as monitoring station are (i) NSR4 Creative Secondary School, (ii) NSR24 PLK Laws Foundation College, and (iii) NSR31 School of Continuing and Professional Studies CUHK respectively.
- 2.2. In accordance with the EM&A Manual, baseline noise level at the noise monitoring stations were established as presented in the Baseline Monitoring Report. Impact noise monitoring will be conducted once per week in the form of 30-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 0700 and 1900 on normal weekdays.
- 2.3. Referring to EM&A manual Section 4.1.2, the impact noise monitoring should be carried out at all the designated monitoring stations when there are contract-related construction activities undertaken within a radius of 300m from the monitoring stations.
- 2.4. No impact monitoring for noise impact was conducted in the reporting month due to the overly distant monitoring station from the works location, where they were farther than 1 km from the closest monitoring station NSR4 to the works location.
- 2.5. Impact noise monitoring will be conducted weekly in the reporting period between 0700-1900 on normal weekdays. Construction works would follow stipulations of the valid Construction Noise Permits if works had to be conducted during restricted hours or public holidays.
- 2.6. Construction noise level were measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq 30min was used as the monitoring parameter for the time period between 0700 and 1900 on normal weekdays. **Table 2.1** summarizes the monitoring parameters, frequency and duration of the impact noise monitoring.

Table 2.1Noise Monitoring Parameters, Time, Frequency and Duration

Time	Duration	Interval	Parameters
Daytime: 0700-1900	Day time: 0700-1900 (during normal weekdays)	$\begin{array}{l} \mbox{Continuously in} \\ L_{eq 5min}/L_{eq 30min} \ (average \\ \mbox{of 6 consecutive } L_{eq 5min}) \end{array}$	L _{eq 30min} L _{10 30min} & L90 30min

MONITORING LOCATIONS

2.7. The monitoring locations were normally made at a point 1m from the exterior of the NSRs building façade and be at a position 1.2m above the ground. A correction of +3dB(A) should be made to the free-field measurements.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

2.8. According to the environmental findings detailed in the EIA report and Baseline Monitoring Report, the designated locations for the construction noise monitoring are listed in **Table 2.2** below.

NSR ID	Noise Sensitive Receivers	Monitoring Location	Position	
NSR 4	Creative Secondary School	Roof Floor	1 m from facade	
NSR 24	PLK Laws Foundation College	ge Pedestrian Road on Ground Floor Free-field		
NSR 31	School of Continuing and Professional Studies - CUHK	Roof Floor	1 m from facade	

Table 2.2Noise Sensitive Receivers

2.9. Three noise monitoring locations for impact monitoring at the nearby sensitive receivers are shown in **Figure 2.1-2.3**.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

IMPACT MONITORING METHODOLOGY

- 2.10. Integrated sound level meter was used for the noise monitoring. The meter was in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications. Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements was accepted as valid only if the calibration levels before and after the noise measurements agree to within 1.0 dB(A). Calibration certificates of the instruments used to be shown at **Appendix F** are intentionally left blank since no impact monitoring equipment was used in the reporting month.
- 2.11. Noise measurements were not made in the presence of fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

ACTION AND LIMIT LEVELS

2.12. The Action/Limit Levels are in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities – Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 are presented in **Table 2.3**.

Table 2.3Action and Limit Levels for Noise per EM&A Manual

Time Period	Action		Time Period Action				L	imit (dB(A))
	When one documented			d • 70 dB(A) for school a					
0700-1900 on normal	complair	nt is r	eceived	from any	•	65	dB(A)	during	
weekdays	one of	one of the noise sensitive			exam	ination per	iod		
	receivers	5							

Note: Limits specified in the GW-TM and IND-TM for construction and operation noise, respectively.

2.13. If exceedances were found during noise monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix E**.

MONITORING RESULTS AND OBSERVATIONS

2.14. Referring to EM&A manual Section 4.1.2, the impact noise monitoring should be carried out when there are Contract-related construction activities undertaken within a radius of 300m from the monitoring stations. No monitoring station was located within a radius of 300m of the Contract site as shown in **Figure 2.4**, no impact monitoring for noise impact was conducted in the reporting period.

Figure 2.4 Site Layout Plan with Noise Sensitive Receivers and Desalination Plant

13

3. WATER QUALITY

- 3.1. In accordance with the recommendations of the EIA, water quality EM&A is required during dredging for the submarine pipelines and, during operation phase. In addition, baseline water quality monitoring will be required prior to the commencement of marine construction activities. The following Section provides details of the water quality monitoring to be undertaken by the Environmental Team (ET) to verify the distance of sediment and brine plume dispersion and to identify whether the potential exists for any indirect impacts to occur to ecological sensitive receivers. The water quality monitoring programme will be carried out to allow any deteriorating water quality to be readily detected and timely action taken to rectify the situation. The status and locations of water quality sensitive receivers and the marine works location may change after issuing this Document. If required, the ET in consultation with IEC will propose updated monitoring locations and seek approval from EPD.
- 3.2. Water quality monitoring for the Contract can be divided into the following stages:
 - Dredging activities during construction phase;
 - Discharge of effluent from main disinfection during construction phase;
 - Operation phase first year upon commissioning; and,
 - Continuous monitoring of effluent quality.
- 3.3. In addition, the marine works contractor is required to complete a silt curtain efficiency test for the combined use of floating silt curtain type and cage type silt curtain for dredging at seawater intake to confirm the silt curtain reduction efficiency assumptions of the assessment. The details of testing plan together with the silt curtain deployment plan shall be submitted by the ET to seek approval from the IEC and EPD.
- 3.4. With the onset of marine dredging activities in late April 2021 at Outfall Shaft Area, a silt curtain efficiency test has been conducted at the Outfall Shaft Area on 16th April 2021 at 6 monitoring intervals (08:00, 10:00, 12:00, 14:00, 16:00, 18:00). The baseline monitoring event has been conducted on 10th April 2021 at 5 monitoring locations. Testing protocols and methodologies had followed the guidelines as presented in the EM&A Manual Annex C. Detailed analysis of in-situ and laboratory data was presented in a separate report which has been submitted to EPD after approval by IEC on 31 May 2021. The overall Silt Removal Effectiveness at Outfall Shaft Area for the combined used of cage and floating type silt curtains was 95.28%.

WATER QUALITY PARAMETERS

3.5. The parameters that have been selected for measurement in situ and in the laboratory are those that were either determined in the EIA to be those with the most potential to be affected by the construction works or are a standard check on water quality conditions. Parameters to be measured in the baseline monitoring are listed in **Table 3.1**.

Table 3.1	Parameters measured in the Impact Marine Water Quality Monitoring
-----------	---

Parameters	Unit	Abbreviation
In-situ measurements		
Dissolved oxygen	mg/L	DO
Temperature	٥C	-
рН	-	-
Turbidity	NTU	-
Salinity	0/00	-
Total Residual Chlorine NOTE1	mg/L	TRC
Laboratory measurements		
Suspended Solids	mg/L	SS
Iron-Soluble NOTE2	mg/L	Fe
Anti-scalant as Reactive Phosphorus NOTE2	mg/L	PO ₄ as P-

NOTE 1: Monitoring of TRC will be conducted when cleaning and sterilization of the new freshwater main is carried out. NOTE 2: The testing methods shall be submitted to EPD for approval prior to the commencement of monitoring programme

3.6. In addition to the water quality parameters, other relevant data were also be measured and recorded in Water Quality Monitoring Logs, including the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal stage, current direction and velocity, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

MONITORING EQUIPMENT

3.7. For water quality monitoring, the following equipment will be used:

Dissolved Oxygen and Temperature Measuring Equipment - The instrument was a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and was operable from a DC power source. It was capable of measuring: dissolved oxygen levels in the range of 0 - 20 mg/L and 0 - 200% saturation; and a temperature of 0 - 45 degrees Celsius. It has a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cables were available for replacement where necessary (e.g. YSI model 59 DO meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Turbidity Measurement Equipment - The instrument was a portable, weatherproof turbidity-measuring unit complete with cable, sensor and comprehensive operation manuals. The equipment was operated from a DC power source, it has a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU and complete with a cable with at least 35 m in length (for example Hach 2100P or an approved similar instrument).

Salinity Measurement Instrument - A portable salinometer capable of measuring salinity in the range of 0 - 40 ppt was provided for measuring salinity of the water at each monitoring location.

Water Depth Gauge – A portable, battery-operated echo sounder (for example Seafarer 700 or a similar approved instrument) was used for the determination of water depth at each designated monitoring station. This unit will preferably be affixed to the bottom of the work boat if the same vessel is to be used throughout the monitoring programme. The echo sounder was suitably calibrated.

Positioning Device – A Global Positioning System (GPS) was used during monitoring to allow accurate recording of the position of the monitoring vessel before taking measurements. The Differential GPS, or equivalent instrument, was suitably calibrated at appropriate checkpoint (e.g. Quarry Bay Survey Nail) to verify that the monitoring station is at the correct position before the water quality monitoring commence.

Water Sampling Equipment - A water sampler, consisting of a PVC or glass cylinder of not less than two litres, which can be effectively sealed with cups at both ends, was used (e.g. Kahlsico Water Sampler 13SWB203 or an approved similar instrument). The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

Total Residual Chlorine for Discharge of Sterilization Water - Total residual chlorine (TRC) shall be measured in-situ using a handheld colorimeter with its testing toolkits.

SAMPLING / TESTING PROTOCOLS

- 3.8. All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at monthly intervals throughout the stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.
- 3.9. On-site calibration of field equipment was follow the "Guide to On-Site Test Methods for the Analysis of Waters", BS 1427: 2009. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available so that monitoring can proceed uninterrupted even when equipment is under maintenance, calibration etc.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

LABORATORY MEASUREMENT AND ANALYSIS

- 3.10. All laboratory works were carried out in a HOKLAS accredited laboratory. Sufficient volume of each water sample was collected at the monitoring stations for carrying out the laboratory analyses. Using chain of custody forms, collected water samples were transferred to a HOKLAS accredited laboratory for immediate processing. The determination work was start within the next working day after collection of the water samples. The laboratory measurements were provided to the client within 5 working days of the sampling event. Analytical methodology and sample preservation of other parameters were based on the latest edition of Standard Methods for the Examination of Waste and Wastewater published by APHA, AWWA and WPCF and methods by USEPA, or suitable method in accordance with requirements of HOKLAS or another internationally accredited scheme. The submitted information was including pre-treatment procedures, instrument use, Quality Assurance/Quality Control (QA/QC) details (such as blank, spike recovery, number of duplicate samples per-batch etc), detection limits and accuracy. The QA/QC details were in accordance with requirements of HOKLAS or another internationally accredited scheme.
- 3.11. Parameters for laboratory measurements, their standard methods and their detection limits are presented in **Table 3.2**.

Parameters	Standard Methods	Detection Limit	Reporting Limit	Precision
Dissolved oxygen (mg/L)	Instrumental, CTD	0.1	-	±25%
Temperature (°C)	Instrumental, CTD	0.1	-	±25%
рН	Instrumental, CTD	0.1	-	±25%
Turbidity (NTU)	Instrumental, CTD	0.1	-	±25%
Salinity $(^{0}/_{0})$	Instrumental, CTD	0.1	-	±25%
Suspended Solids (mg/L)	APHA 17 th Ed 2540D	1.0	2.0	±17%
Total Residual Chlorine (mg/L)	APHA 21st Ed 4500 – ClG	0.1 ^{NOTE1}	0.2 ^{NOTE1}	±10% NOTE1
Iron-soluble	USEPA 6010C	0.2 ^{NOTE1}	0.2 ^{NOTE1}	±25% ^{NOTE1}
Anti-scalant as Reactive phosphorus	APHA 4500P: B&F	0.01 ^{NOTE1}	0.01 ^{NOTE1}	±25% ^{NOTE1}

 Table 3.2 Laboratory measurements, standard methods and corresponding detection limits of marine water quality monitoring

3.12. If exceedances were found during water monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix G**.

MONITORING LOCATION

3.13. The Impact water quality monitoring locations are in accordance with the EM&A Manual and detailed in **Table 3.3** below. A schedule for water quality monitoring was prepared by the ET and approved by IEC and EPD prior to the commencement of the monitoring.

Station	Easting	Northing	Description
CE	843550	815243	Upstream control station at ebb tide
CF	846843	810193	Upstream control station at flood tide
WSR1	846864	812014	Ecological sensitive receiver at Tung Lung Chau
WSR2	847645	812993	Fisheries sensitive receiver at Tung Lung Chau
WSR3	848023	813262	Ecological sensitive receiver at Tung Lung Chau
WSR4	847886	814154	Ecological sensitive receiver at Tai Miu Wan
WSR16	845039	815287	Ecological sensitive receiver at Fat Tong Chau
WSR33	847159	814488	Ecological sensitive receiver at Tai Miu Wan
WSR36	846878	814081	Ecological sensitive receiver at Kwun Tsai
WSR37	846655	813810	Ecological sensitive receiver at Tit Cham Chau
NF1	846542	813614	Edge of mixing zone, ~ 200m west of outfall diffuser
NF2	846942	813614	Edge of mixing zone, ~ 200m east of outfall diffuser
NF3	846742	813414	Edge of mixing zone, ~ 200m south of outfall diffuser

Table 3.3Location of Impact Water Quality Monitoring Stations

3.14. WSR1 to WSR37 were identified in accordance with Annex 14 of the EIAO-TM as well as Clause 3.4.4.2 of the Environmental Impact Assessment Study Brief for Desalination Plant at Tseung Kwan O (No. ESB-266/2013). WSR1 to WSR3 are sited near the Tung Lung Chau Fish Culture Zone; WSR16 and WSR36 are sited near the coral assemblages along the coastlines of Fat Tong Chau and Kwun Tsai respectively; WSR 4 and WSR33 are sited near the Coastal Protection Area and coral assemblages in waters of Tai Miu Wan; WSR37 is sited near the fisheries resource including spawning and nursery grounds at the coastal water of Tit Cham Chau.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Monthly EM&A Report No.24

Figure 3.1

Baseline and Impact water quality monitoring locations under EM&A Manual

SAMPLING FREQUENCY

- 3.15. During periods when there are dredging works, impact monitoring was undertaken at the monitoring stations as shown in **Figure 3.1** and **Table 3.3** three days per week during the construction phase after the commencement of marine construction works and dredging activities. Monitoring at each station was undertaken at both mid-ebb and mid-flood tides on the same day. The tidal range selected for the impact monitoring was at least 0.5 m for both flood and ebb tides as far as practicable. The interval between two sets of monitoring was not less than 36 hours. The monitoring frequency would be increased in the case of exceedances of Action/Limit Levels if considered necessary by ET. Monitoring frequency would be maintained as far as practicable.
- 3.16. The monitoring location/position, time, water depth, water temperature, salinity, weather conditions, sea conditions, tidal stage, special phenomena and work underway at the marine works site were recorded.

SAMPLING DEPTHS & REPLICATION

3.17. For Impact monitoring, each station was sampled and measurements/ water samples was taken at three depths, 1 m below the sea surface, mid-depth and 1 m above the seabed. For stations that are less than 3 m in depth, only the mid depth sample was taken. For stations that are less than 6 m in depth, only the surface and seabed sample were taken. For in situ measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station. All observations and results were recorded in the data record sheets in **Appendix L**.

ACTION AND LIMIT LEVELS

3.18. The Action and Limit Levels have been set based on the derivation criteria specified in the EM&A Manual, as shown in **Table 3.4** below. Based on the baseline water quality monitoring data and the derivation criteria specified in **Table 3.4**, the Action/Limit Levels have been derived and are presented in **Table 3.5**.

MONITORING PROGRAMME

- 3.19. The ET of the Contract had conducted the baseline water monitoring between 12 May 2020 to 6 Jun 2020 at the thirteen designated monitoring stations and the six designated monitoring at waters near TKO in accordance with the EM&A Manual and Contract Specification respectively. The monitoring results was presented in Baseline Water Quality Monitoring Report separately.
- 3.20. The commencement of marine construction and dredging activities for the Contract have been conducted in March and April 2021 respectively.

Parameters	Action	Limit
Construction Phase	e Impact Monitoring	
DO in mg/L	Surface and Middle	Surface and Middle
	5%-ile of baseline data for surface	4 mg L-1
	and middle layer	
	<u>Bottom</u>	Bottom
	5%-ile of baseline data for bottom	2 mg L ⁻¹
	layers	
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone
	5.1 mgL ⁻¹ or level at control station	5.0 mgL-1 or level at control station
	(whichever the lower)	(whichever the lower)
SS in mg/L	≥ 95 %-ile of baseline data or 20%	≥ 99 %-ile of baseline data or 30%
(Depth-averaged)	exceedance of value at any impact	exceedance of value at any impact
	station compared with	station compared with
	corresponding data from control	corresponding data from control
	station	station
Turbidity in NTU	≥ 95 %-ile of baseline data or 20%	≥ 99 %-ile of baseline data or 30%
(Depth-averaged)	exceedance of value at any impact	exceedance of value at any impact
	station compared with	station compared with
	corresponding data from control	corresponding data from control
	station	station
First-year Operation	on Phase Monitoring	
DO in mg/L	Surface and Middle	Surface and Middle
	5%-ile of baseline data for surface	4 mg L ⁻¹
	and middle layer	
	<u>Bottom</u>	Bottom
	5%-ile of baseline data for bottom	2 mg L ⁻¹
	layers	
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone
	5.1 mgL ⁻¹ or level at control station	5.0 mgL ⁻¹ or level at control station
	(whichever the lower)	(whichever the lower)

Table 3.4Criteria of Action and Limit Levels for Water Quality

монину Емаа керо	t N0.24	CONSULTING LIMITED
SS in mg/L (Depth-	\geq 95 %-ile of baseline data or 20%	\geq 99 %-ile of baseline data or 30%
averaged)	exceedance of value at any impact	exceedance of value at any impact
	station compared with	station compared with
	corresponding data from control	corresponding data from control
	station	station
Turbidity in NTU	≥ 95 %-ile of baseline data or 20%	≥ 99 %-ile of baseline data or 30%
(Depth-averaged)	exceedance of value at any impact	exceedance of value at any impact
	station compared with	station compared with
	corresponding data from control	corresponding data from control
	station	station
Salinity in PSU	109% of baseline level or 9%	110% of baseline level or 10%
(Depth-averaged)	exceedance of value at any impact	exceedance of value at any impact
(Deptil averagea)		
	station compared with	station compared with
	corresponding data from control	corresponding data from control
	station	station
Iron in mg/L	0.3 mgL ⁻¹	0.3 mgL ⁻¹
(Depth-averaged)		

Parameters	Action	Limit		
Construction Phas	e Impact Monitoring			
D0 in mg/L	Surface and Middle	Surface and Middle		
20 m mg/ 2	7.30 mg L ⁻¹	4 mg L ⁻¹		
	Bottom	Bottom		
	7.31 mg L ⁻¹	2 mg L ⁻¹		
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone		
	5.1 mgL ⁻¹ or level at control station	5.0 mgL ⁻¹ or level at control station		
	(whichever the lower)	(whichever the lower)		
SS in mg/L	5.00 mg L ⁻¹ or 20% exceedance of	6.00 mg L ⁻¹ or 30% exceedance of value		
(Depth-averaged)	value at any impact station	at any impact station compared with		
	compared with corresponding data	corresponding data from control		
	from control station	station		
Turbidity in NTU	2.41 NTU or 20% exceedance of	2.84 NTU or 30% exceedance of value		
(Depth-averaged)	value at any impact station	at any impact station compared with		
	compared with corresponding data	corresponding data from control		
	from control station	station		
First-year Operati	on Phase Monitoring ^{iv}			
D0 in mg/L	Surface and Middle	Surface and Middle		
3,	7.30 mg L ⁻¹	4 mg L ⁻¹		
	Bottom	Bottom		
	7.31 mg L ⁻¹	2 mg L ⁻¹		
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone		
	5.1 mgL ⁻¹ or level at control station	5.0 mgL ⁻¹ or level at control station		
	(whichever the lower)	(whichever the lower)		
SS in mg/L	5.00 mg L ⁻¹ or 20% exceedance of	6.00 mg L ⁻¹ or 30% exceedance of value		
(Depth-averaged)	valueat any impact station	at any impact station compared with		
	compared with corresponding data from control station	corresponding data from control station		

Table 3.5Derived Action and Limit Levels for Water Quality

Turbidity in NTU	2.41 NTU or 20% exceedance of	2.84 NTU or 30% exceedance of value							
(Depth-averaged)	value at any impact station	at any impact station compared with							
	compared with corresponding data	corresponding data from control							
	from control station	station							
Salinity in PSU	34.28 PSU or 9% exceedance of	34.60 PSU or 10% exceedance of value							
(Depth-averaged)	value at any impact station	at any impact station compared with							
	compared with corresponding data	corresponding data from control							
	from control station	station							
Iron in mg/L	0.3 mgL ⁻¹	0.3 mgL ⁻¹							
(Depth-averaged)									

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For Turbidity, SS, iron and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

iv. For the Action and Limit Levels adopted during First-year Operation Phase Monitoring, further review would be made according to the EM&A Manual during Operation Phase.

MONITORING RESULTS AND OBSERVATIONS

- 3.21. General water quality monitoring at the ten monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36 and WSR37) were conducted on 4, 8, 10, 12, 15, 17, 19, 22, 24 and 26 February 2022.
- 3.22. Fifty-four (54) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. Thirty-eight (38) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level. Details of the exceedance are presented in **Appendix O**.
- 3.23. Investigation on the reason of exceedance has been carried out, where the exceedances of SS 4, 8, 10, 12, 15, 17, 19, 22, 24 and 26 February 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix O**.
- 3.24. Monitoring results of 6 key parameters: Salinity, DO, turbidity, SS, pH and temperature in this reporting, are summarized in **Table 3.6** and **Table 3.7**, and detailed results are presented in **Appendix L**.

Contract No. 13/WSD/17
Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant
Monthly EM&A Report No.24

Table 3.6Summary of Impact Water Quality Monitoring Results (Mid-Flood)

		Parameters									
Locations		Salinity	Dissolved Oxygen (mg/L) Surface & Bottom Middle		рН	Turbidity	Suspended	Temp.(°C)			
		(ppt)			P	(NTU)	Solids (mg/L)	i ompi(oj			
	Avg.	32.9	9.1	9.1	8.3	4.6	6.9	18.4			
CE	Min.	30.6	8.3	8.2	8.0	3.5	2.5	16.6			
	Max.	34.0	10.1	10.2	8.4	6.1	20.0	20.4			
	Avg.	32.9	9.1	9.1	8.3	3.7	7.5	18.5			
CF	Min.	31.6	8.3	8.3	8.1	2.5	2.5	16.4			
	Max.	34.2	10.0	10.1	8.4	5.0	27.0	20.2			
	Avg.	32.8	9.2	9.2	8.3	3.0	6.3	18.4			
WSR1	Min.	30.8	8.4	8.4	8.0	1.6	2.5	16.4			
	Max.	34.2	10.1	10.1	8.4	4.2	19.0	20.4			
WSR2	Avg.	32.8	9.1	9.1	8.3	2.2	7.9	18.3			
	Min.	30.9	8.3	8.3	8.1	1.8	2.5	16.6			
	Max.	34.0	10.1	10.2	8.5	2.9	23.0	19.9			
	Avg.	32.8	9.0	9.0	8.2	3.0	8.1	18.3			
WSR3	Min.	31.2	8.4	8.3	8.0	1.8	2.5	16.4			
	Max.	33.7	10.1	10.0	8.5	4.1	21.0	19.9			
	Avg.	32.9	9.1	9.1	8.3	3.2	8.2	18.4			
WSR4	Min.	31.0	8.4	8.4	8.1	2.1	2.5	16.5			
	Max.	34.4	10.0	10.0	8.5	4.6	22.0	20.1			
	Avg.	33.1	8.9	8.9	8.3	3.1	7.0	18.4			
WSR16	Min.	30.8	8.4	8.4	8.1	1.5	2.5	16.6			
	Max.	34.2	9.7	9.8	8.5	4.0	21.0	20.4			
	Avg.	33.0	9.0	9.0	8.3	3.2	6.4	18.4			
WSR33	Min.	31.0	8.3	8.4	8.1	2.0	2.5	16.5			
	Max.	34.2	9.8	9.9	8.4	4.3	21.0	20.0			
	Avg.	32.8	9.0	9.0	8.3	2.8	7.0	18.4			
WSR36	Min.	31.2	8.4	8.3	8.1	1.2	2.5	16.3			
	Max.	33.8	10.0	10.1	8.5	4.0	25.0	20.2			
	Avg.	32.9	9.0	9.0	8.2	2.9	5.8	18.3			
WSR37	Min.	31.4	8.3	8.3	8.0	2.1	2.5	16.5			
	Max.	34.3	9.8	9.8	8.4	4.3	13.0	20.2			

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Measurement data of Suspending Solids would be rounding to 2.5mg/L if the value was less than 2.5mg/L to facilitate data analysing.

		Parameters									
Locations		Salinity	Dissolved Ox	xygen (mg/L)	рН	Turbidity	Suspended	Temp.(∘C)			
		(ppt)	Surface & Middle	Bottom	pir	(NTU)	Solids (mg/L)	remp.(-c)			
	Avg.	32.8	9.2	9.2	8.3	3.4	7.4	18.1			
CE	Min.	30.6	8.4	8.5	8.0	1.8	2.5	16.3			
	Max.	34.2	10.1	10.2	8.5	6.1	27.0	19.7			
	Avg.	32.8	9.1	9.2	8.3	3.9	7.4	18.3			
CF	Min.	31.6	8.3	8.3	8.1	2.9	2.5	16.4			
	Max.	33.6	10.0	10.1	8.4	5.0	27.0	19.6			
	Avg.	32.8	9.1	9.1	8.3	3.2	6.2	18.2			
WSR1	Min.	30.8	8.4	8.4	8.0	2.1	2.5	16.4			
	Max.	34.2	10.1	10.1	8.4	4.2	19.0	19.5			
	Avg.	32.8	9.2	9.2	8.3	2.3	8.3	18.2			
WSR2	Min.	30.9	8.3	8.3	8.1	1.8	2.5	16.6			
	Max.	34.0	10.1	10.2	8.5	2.9	23.0	19.5			
	Avg.	32.8	9.0	9.0	8.2	3.1	8.4	18.1			
WSR3	Min.	31.2	8.4	8.3	8.0	1.9	2.5	16.4			
	Max.	33.7	10.1	10.0	8.5	4.1	21.0	19.6			
	Avg.	32.8	9.1	9.1	8.3	3.2	8.5	18.2			
WSR4	Min.	31.0	8.4	8.4	8.1	2.1	2.5	16.5			
	Max.	33.9	10.0	10.0	8.5	4.6	22.0	19.4			
	Avg.	33.0	8.9	8.9	8.3	3.2	7.4	18.2			
WSR16	Min.	30.8	8.4	8.4	8.1	2.4	2.5	16.6			
	Max.	34.2	9.7	9.8	8.4	4.0	21.0	19.7			
	Avg.	33.0	9.0	9.0	8.3	3.3	6.5	18.2			
WSR33	Min.	31.0	8.3	8.4	8.1	2.0	2.5	16.5			
	Max.	34.2	9.8	9.9	8.4	4.3	21.0	19.6			
	Avg.	32.7	9.0	9.0	8.3	3.0	7.2	18.1			
WSR36	Min.	31.2	8.4	8.3	8.1	1.9	2.5	16.3			
	Max.	33.8	10.0	10.1	8.5	4.0	25.0	19.6			
	Avg.	32.7	9.0	9.0	8.2	3.0	6.0	18.1			
WSR37	Min.	31.4	8.3	8.3	8.0	2.1	2.5	16.5			
	Max.	33.7	9.8	9.8 9.8		4.3	13.0	19.6			

Table 3.7Summary of Impact Water Quality Monitoring Results (Mid-Ebb)

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Measurement data of Suspending Solids would be rounding to 2.5mg/L if the value was less than 2.5mg/L to facilitate data analysing.

4. WASTE

4.1. The waste generated from this Contract includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the Contract are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Contract, the quantities of different types of waste generated in the reporting month are summarised in **Table 4.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix H**.

Table 4.1Quantities of Waste Generated from the Contract during February 2022

	Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly				
Reporting Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / cardboard packaging	Plastics (see Note)	Chemical Waste	Others, e.g. general refuse
	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)
February 2022*	175.850	0	0	0	175.850	0	0	0	0	0	94.830

Notes: (1) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

* The data may be updated in the next reporting month after final confirmation by the end of the month.

5. LANDFILL GAS MONITORING

MONITORING REQUIREMENT

5.1. In accordance with Section 11 of the EM&A Manual, monitoring of landfill gas is required for construction works within the 250m Consultation Zone. Part of the desalination plant and the indicative area of natural slope mitigation works fall within the SENT Landfill Extension Consultation Zone; and part of the 1,200 mm diameter fresh water mains along Wan Po Road falls within the SENT Landfill and SENT Landfill Extension Consultation Zones, TKO Stage II/III Restored Landfill and TKO Stage I Restored Landfill Consultation Zones.

MONITORING LOCATION

- 5.2. Monitoring of oxygen, methane, carbon dioxide and barometric pressure would be performed for excavations at 1m depth or more within the consultation Zone.
- 5.3. During construction of works within the consultation zones, excavations of 1m depth or more was monitored:
 - At the ground surface before excavation commences;
 - Immediately before any worker enters the excavation;
 - At the beginning of each working day for the entire period the excavation remains open; and
 - Periodically through the working day whilst workers are in the excavation.
- 5.4. For excavations between 300mm and 1m deep, measurements were carried out:
 - Directly after the excavation has been completed; and
 - Periodically whilst the excavation remains open.

MONITORING PROGRAMME

5.5. Since part of the desalination plant (Wan Po Road and MIC compound/Basketball Court) and the indicative area of natural slope mitigation works fall within the SENT Landfill Extension Consultation Zone in this contract (Figure 5.1), landfill gas monitoring would be required for Wan Po Road and MIC compound/Basketball Court (Figure 5.2) if excavations were conducted at more than 300mm deep. Although SENT Landfill Extension has commenced operation since November 2021, no excavation works were conducted at MIC compound/Basketball Court. Hence no landfill gas monitoring would be scheduled for MIC compound/Basketball Court at the current stage. In this reporting period, 18 time of landfill gas monitoring was recorded at Wan Po Road (Ch1+625 – Ch1+513). No exceedance of action and limit levels for oxygen, methane and carbon dioxide was observed. Monitoring was conducted during excavations at 1m depth or more within the consultation zone and whenever workers entered the excavation on the day.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

MONITORING LOCATION

5.6. The area required to be monitored for landfill gas in the reporting period is shown in **Figure 5.2**.

Figure 5.1 Overview of the SENT Extension Consultation Zone and the Contract Site Area

MONITORING PARAMETERS

- 5.7. LFG monitoring was carried out to identify any migration between the landfill and the Contract and to ensure the safety of the construction, operation and maintenance personnel working on-site, visitors and any other person within the Contract area.
- 5.8. The following parameters were monitored:
 - Methane
 - Oxygen
 - Carbon Dioxide
 - Barometric Pressure
- 5.9. Action and Limit Level are provided in **Table 5.1**.

Table 5.1 Action and Limit Level for Landin Gas Monitoring Equipment		
Parameters	Action Level	Limit Level
Oxygen (02)	<19% 02	<19% 02
Methane (CH4)	>10% LEL	>20% LEL
Carbon Dioxide (CO2)	>0.5% CO2	>1.5% CO2

Table 5.1	Action and Limit Level for Landfill Gas Monitoring Equipment
I GOIC OIL	Totton and Ennie Boyor for Banann das Fromtoring Equipmont

MONITORING EQUIPMENT

- 5.10. Landfill Gas monitoring was carried out using intrinsically-safe, portable multi-gas monitoring instruments. The gas monitoring equipment is:
 - Complying with the Landfill Gas Hazard Assessment Guidance Note as intrinsically safe;
 - Capable of continuous barometric pressure and gas pressure measurements;
 - Normally operated in diffusion mode unless required for spot sampling, when it should be capable of operating by means of an aspirator or pump;
 - Having low battery, fault and over range indication incorporated;
 - Capable of storing monitoring data, and shall be capable of being downloaded directly;
 - Measure in the following ranges:

methane	0-100% LOWER EXPLOSION LIMIT (LEL) AND 0-100% V/V;
oxygen	0-25% v/v;
carbon dioxide	0-5% v/v; and
barometric pressure	mBar (absolute)

• alarm (both audibly and visually) in the event that the concentrations of the following are exceeded:

methane	>10% LEL;
oxygen	<19%
carbon dioxide	>0.5% by volume
barometric pressure	mBar (absolute)

Figure 5.2 Location Map for Landfill Gas Monitoring at Wan Po Road

5.11. In this reporting period, 18 time of landfill gas monitoring was recorded at Wan Po Road (Ch1+625 – Ch1+513). No exceedance of action and limit levels for methane, oxygen and carbon dioxide was observed. Monitoring was conducted during excavations at 1m depth or more within the consultation zone and whenever workers entered the excavation on the day.

6. SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

6.1. The Environmental Complaint Handling Procedure is shown in below **Figure 6.1**:

Figure 6.1 Environmental Complaint Handling Procedures

- 6.2. No noise monitoring was conducted during the reporting period since there are no Contractrelated construction activities undertaken within a radius of 300m from the monitoring locations.
- 6.3. General water quality monitoring at the ten monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36 and WSR37) were conducted on 4, 8, 10, 12, 15, 17, 19, 22, 24 and 26 February 2022.
- 6.4. Fifty-four (54) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. Thirty-eight (38) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level. Details of the exceedance are presented in **Appendix O**.
- 6.5. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 4, 8, 10, 12, 15, 17, 19, 22, 24 and 26 February 2022. were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix O**.
- 6.6. In this reporting period, 18 time of landfill gas monitoring was recorded at Wan Po Road (Ch1+625 Ch1+513). No exceedance of action and limit levels for methane, oxygen and carbon dioxide was observed. Monitoring was conducted during excavations at 1m depth or more within the consultation zone and whenever workers entered the excavation on the day.
- 6.7. Moreover, oil stains were also observed at CEDD pier after leaving of Explosives Vessel on 9 and 23 February 2022 by Supervising Officer's Representative (SOR) during site inspection. ET will keep closely monitoring the performance of Contractor, implementation of water quality mitigation measure and other contamination issue around the Project site, to ensure the EM&A requirement is properly implemented.
- 6.8. No notification of summons and prosecution was received in the reporting period.
- 6.9. Statistics on complaints and regulatory compliance are summarized in **Appendix J**.

7. EM&A SITE INSPECTION

7.1. Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 8, 17, 23 and 28 February 2022 at the site portions listed in **Table 7.1** below.

Date	Inspected Site Portion	Time
8 February 2022	TKO 137	14:30 - 17:00
17 February 2022	TKO 137	11:30 - 12:00
23 February 2022	TKO 137	11:00 - 12:00
28 February 2022	TKO 137	09:00 - 11:00

Table 7.1Summaries of Site Inspection Record

- 7.2. Joint site inspections with IEC were carried out on 8, 17, 23 and 28 February 2022.
- 7.3. Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in Table 7.2.

Date	Environmental Observations	Follow-up Status
8 February 2022	No major observations were recorded on the reporting day.	Nil.
17 February 2022	No major observations were recorded on the reporting day.	Nil.
23 February 2022	No major observations were recorded on the reporting day.	Nil.
28 February 2022	No major observations were recorded on the reporting day.	Nil.

Table 7.2Site Observations

7.4. According to the EIA Study Report, Environmental Permit, contract documents and EM&A Manual, the mitigation measures detailed in the documents should be implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix C**. Site inspection proforma of the reporting period is provided in **Appendix I**.

8. **FUTURE KEY ISSUES**

- 8.1. Works to be undertaken in the next reporting month are:
 - Land Survey;
 - Construction of solar panel supports at roof of ActiDAFF;
 - Construction of Reverse Osmosis (RO) Building staircases and internal finishing;
 - Construction of sludge thickener, Post Treatment Building (PTB);
 - Construction of On-Site Chlorine Generation Building (OSCG Bldg);
 - Internal finishing work at Product Water Storage Tank (PWST), Main Electrical & Central Chiller Plant Building;
 - Manhole construction and Glass Reinforced Plastic (GRP) pipe installation;
 - Construction of manholes no.15 and no.16 adjacent to ActiDAFF and RO;
 - Construction of 1/F to 2/F walls and columns of Administration Building;
 - Construction of reinforced concrete (RC) support of Inspection Corridor;
 - Construction of structural wall and Roof of Chemical Building;
 - Outfall Shaft Dewatering; Predrill, Rock cutting and excavations;
 - Intake shaft Idling
 - Pipe jacking at Combined Shaft for Outfall pipelines;
 - Intake tunnel Demobilize the jack pipe system and commencement of grouting works;
 - E&M works ActiDaff scaffolding, installation of E&M piping;
 - E&M works RO- Fire services installation;
 - E&M works CO2 tank area installation of Silos;
 - E&M works Chiller Building installation of chillers.
- 8.2. The major environmental impacts brought by the above construction works will include:
 - Construction dust and noise generation from construction pipe piling driving works, breaking rock surface, excavation works and marine construction works
 - Waste generation from construction activities
 - Impact on water quality from marine construction works and inland construction works
- 8.3. The key environmental mitigation measures for the Project in the coming reporting period associated with the above construction works will include:
 - Dust suppression by regular wetting and water spraying for construction works
 - Reduction of noise from equipment and machinery on-site by regular checking of on-site plant/vehicle to ensure proper functioning
 - Sorting and storage of general refuse and construction waste

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge
- 8.4. Referring to EM&A Manual Section 4.1.2, the impact noise monitoring should be carried out at all the designated monitoring stations when there are project-related construction activities undertaken within a radius of 300m from the monitoring stations.
- 8.5. The impact noise monitoring schedule for the next reporting month to be shown at **Appendix K** is not included since no impact noise monitoring will be conducted in the next reporting month.

9. CONCLUSIONS AND RECOMMENDATIONS

- 9.1. This is the 24th Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 February to 28 February 2022, in accordance with the EM&A Manual and the requirement under FEP-01/503/2015/A.
- 9.2. No noise monitoring was conducted in the reporting period due to the over distant monitoring station from the works location, in which construction activities were not undertaken within a radius of 300m from the monitoring locations.
- 9.3. The EM&A works for water quality were conducted during the reporting period in accordance with the EM&A Manual.
- 9.4. Fifty-four (54) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. Thirty-eight (38) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level. Details of the exceedance are presented in **Appendix O**.
- 9.5. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 4, 8, 10, 12, 15, 17, 19, 22, 24 and 26 February 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix O**.
- 9.6. It was concluded that all exceedances recorded in the reporting month were unrelated to the project.
- 9.7. In this reporting period, 18 time of landfill gas monitoring was recorded at Wan Po Road (Ch1+625 Ch1+513). No exceedance of action and limit levels for methane, oxygen and carbon dioxide was observed. Monitoring was conducted during excavations at 1m depth or more within the consultation zone and whenever workers entered the excavation on the day.
- 9.8. Moreover, oil stains were also observed at CEDD pier after leaving of Explosives Vessel on 9 and 23 February 2022 by Supervising Officer's Representative (SOR) during site inspection. ET will keep closely monitoring the performance of Contractor, implementation of water quality mitigation measure and other contamination issue around the Project site, to ensure the EM&A requirement is properly implemented.
- 9.9. Weekly environmental site inspection was conducted during the reporting period. No major deficiency was observed during site inspection. The environmental performance of the project was therefore considered satisfactory.
- 9.10. According to the environmental site inspections performed in the reporting month, the Contractor is reminded to pay attention on maintaining proper materials storage, site hygiene and dust suppression mitigation measures.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- 9.11. No environmental complaint was received in the reporting period.
- 9.12. No notification of summons or prosecution was received since commencement of the Contract.
- 9.13. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

³⁹The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Appendix A

Master Programme

iy ID	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planned Finish	Actual % Complete	Variance Finish Date	Total Float	N	Der				Apr		2020 .in Jul
Project Progr	ramme Updated as at 31 January 2022 (Level 2)											Lec	Jai		liviai		viay Ju	
Key Dates																		
	ment and Completion Date																	
KD0000100	Letter of Acceptance	0	15-Nov-19		0	15-Nov-19 A		100%	0		8	Lette	∋rof	Acce	eptan	ce		
<d0000110< td=""><td>Commencement of the Works</td><td>0</td><td>30-Dec-19</td><td></td><td>0</td><td>30-Dec-19 A</td><td></td><td>100%</td><td>0</td><td></td><td></td><td></td><td>\$ c</td><td>omn</td><td>ence</td><td>ment</td><td>of the</td><td>Works</td></d0000110<>	Commencement of the Works	0	30-Dec-19		0	30-Dec-19 A		100%	0				\$ c	omn	ence	ment	of the	Works
<d0000120< td=""><td>Completion of the Works (1170 Days)</td><td>0</td><td></td><td>13-Mar-23</td><td>0</td><td></td><td>13-Mar-23</td><td>0%</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d0000120<>	Completion of the Works (1170 Days)	0		13-Mar-23	0		13-Mar-23	0%	0	0								
KD0000130	Revised Completion of the Works (183 Days EOT Granted)	0			183	14-Mar-23	12-Sep-23	0%		0								
KD0000510	Planned Completion of the Works	0			0		30-Sep-23	0%		-18								
KD0000520	Target Completion of the Works (Best Endeavour)	0			0		02-Jul-23	0%		72								
xecutive Su																		
Preliminary												 						
ES0001000	Mobilization and Preliminary Set Up	191	30-Dec-19	07-Jul-20	0	30-Dec-19 A	20-Jul-20 A	100%	-13				=	-				
Civil Design	AIP and DDA																	
· · · · · · · · · · · · · · · · · · ·	AIP Civil Design Submission and Approval	330	30-Dec-19	23-Nov-20	0	30-Dec-19 A	31-Aug-20 A	100%	84				=	-	-			
ES0001020	DDA Civil Design Submission and Approval	414	28-Feb-20	16-Apr-21	0	22-Jan-20 A	01-Sep-21 A	100%	-138			-	1	_	-			
18E Decign	AIP and DDA																	
ES0002000	M&E AIP Process Mechanical Submission and Approval	477	30-Dec-19	19-Apr-21	0	30-Dec-19 A	22-Dec-20 A	100%	118				-	-	-			
ES0002010	M&E DDA Process Mechanical Submission and Approval	679	08-Feb-20	17-Dec-21	0	21-Jul-20 A	02-Sep-21 A	100%	106								8	
ES0002020	M&E AIP Instrumentation & Control Submission and Approval	607	31-Jan-20	28-Sep-21	0	04-Feb-20 A	25-Feb-20 A	100%	581			-						
ES0002030	M&E DDA Instrumentation & Control Submission and	514	22-Jul-20	17-Dec-21	97	13-Feb-21 A	08-May-22	65%	-142	172								
	Approval									172								
ES0002050	M&E DDA Electrical and Renewable Energy Submission and Approval	382	16-Aug-20	01-Sep-21	0	17-Aug-20 A	31-Dec-20 A	100%	244									
ES0002060	M&E AIP Building Services Submission and Approval	226	30-Dec-19	11-Aug-20	0	30-Dec-19 A	30-Oct-20 A	100%	-80						1 1 1	1 1 1 1 1 1		
ES0002065	M&E Design Basis & Civil Guidance Dwg	112	30-Dec-19	19-Apr-20	0	30-Dec-19 A	24-Jul-20 A	100%	-96				-					
ES0002070	M&E DDA Building Services Submission and Approval	306	28-Feb-20	29-Dec-20	0	01-Mar-20 A	30-Jun-21 A	100%	-183									
ES0002085	M&E AIP Site Electrical Submission and Approval	155	09-Jun-20	10-Nov-20	0	21-Mar-20 A	22-Jul-20 A	100%	111									
ES0002090	M&E DDA Lift Submission and Approval	140	27-Aug-20	13-Jan-21	0	01-Oct-20 A	12-May-21 A	100%	-119							· · · · · ·		
ES0002095	M&E DDA Site Electrical Submission and Approval	140	11-Nov-20	30-Mar-21	0	23-Jul-20 A	04-Jun-21 A	100%	-66									
ES0002100	M&E DDA T&C Design Submission and Approval	155	29-Mar-22	30-Aug-22	35	01-Aug-21 A	07-Mar-22	75%	176	220								
Procuremen	t of Major Plant & Equipment Schedule																	
ES0002320	M&E Procurement of Major Plant, Equipment, Material and	901	14-Mar-20	31-Aug-22	184	04-Feb-20 A	03-Aug-22	73%	28	83				-	:			
ES2420	Delivery M&E Procurement of Mechanical Equipment - Intake Pumps	595	18-May-20	02-Jan-22	133	04-Feb-20A	13-Jun-22	70%	-162	15		 		-				
ES2430	M&E Procurement of Mechanical Equipment - ActiDAFF	333	30-Oct-20	27-Sep-21	32	02-Aug-20 A	04-Mar-22	90%	-158	79		-					-	
ES2440	Underdrain M&E Procurement of Mechanical Equipment - ActiDAFF	298	15-Mar-21	06-Jan-22	139	23-Jul-20 A	19-Jun-22	50%	-164	126		-						
ES2450	Media		22-Feb-21						-36	120								
	M&E Procurement of Mechanical Equipment - RO and ERD Rack	274		22-Nov-21	0	22-Jul-20 A	28-Dec-21 A	100%						_				
ES2460	M&E Procurement of Mechanical Equipment - RO Membrane	755	29-Mar-20	22-Apr-22	225	12-Feb-20 A	13-Sep-22	62%	-144	161		- - - -						
ES2470	M&E Procurement of Electrical Equipment - CLP Substation for LV Switchboard / Genset / Building Services	300	14-Mar-20	07-Jan-21	0	14-Mar-20 A	28-Feb-21 A	100%	-52									
132kV Subs	tation																	
ES0001460	Excavation and Formation Works for 132kV Substation	15	16-Mar-20	30-Mar-20	0	19-Feb-20A	23-Apr-20 A	100%	-24								Excav	ation a
ES0001470	Construction of 132kV Substation	233	31-Mar-20	18-Nov-20	0	27-Apr-20 A	30-Dec-20 A	100%	-42			-						
ES0001480	Architectural Finishes for 132kV Substation	126	11-Sep-20	14-Jan-21	0	23-Nov-20 A	22-Mar-21 A	100%	-67			-						
ES0002240	M&E Installation of 132kV Substation	93	20-Nov-20	20-Feb-21	0	01-Dec-20 A	22-Mar-21 A	100%	-30			 		- +				
Combine Sh																		
compline 5h	iait iait	257	27-Mar-20	08-Dec-20	0	02-May-20 A	30-Jun-21 A	100%	-204	-		1				: :		

Summary Bar	Actual Work 💠	♦ Target Milestone	Page 1 of 4
Actual Level of Effort	Early Bar 🔶	♦ Milestone	
Target Bar	Critical Bar		

			Stage	e 1 of Tesung Kwan O Desalination Plant						Ja	n 22
Actual % Complete	Variance Finish Date	Total Float	N Dec	2020 2021 2022 lec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan F Mar Apr Mar	c Jan	F	Mar	202 Apr N		un J	Jul Aug
100%	0		Lette	etter of Acceptance							
100%	0			S Commencement of the Works							
0%	0	0					\$(Comp	letion	ı of th	ne Worl
0%		0					-		_		
0%		-18									
0%		72								•	Target
100%	-13			Mobilization and Preliminary Set Up							
100%	84										
				AIP Civil Design Submission and Approval							
100%	-138			DDA Civil Design Supmission and Approval							
100%	118			M&E AIP Process Mechanical Submission and Approval							
100%	106			M&E DDA Process Mechanical Submission and Apr	vrdval						
					iyvai						
100%	581			M&EAIP Instrumentation & Control Submission and Approval							
65%	-142	172		M&E DDA Instrumentation & Co	ontrol	Subr	nissi	on an	d Apr	orova	ıl, M&E
100%	244			M&E DDA Electrical and Renewable Energy Submission and Appro	val						
100%	-80			M&E AIP Building Services Submission and Approval							
100%	-96			M&E Design Basis & Civil Guidance Dwg							
100%	-183			M&E DDA Building Services Submission and Approval							
100%	111			M&E AIP Site Electrical Submission and Approval							
100%	-119			M&E DDA Lift Submission and Approval							
100%	-66			M&E DDA Site Electrical Submission and Approval							
75%	176	220) Desi	an S	Subm	hissior	1 and	Appr	roval, N
73%	28	83		M&E Procurer	nent c	of Ma	ijor P	lant, I	Equip	men	t, Mater
70%	-162	15		M&E Procurement of Mec	hanic	al Eq	uipn	hent -	Intak	e Pu	mps, M
90%	-158	79		M&E Procurement of Mechanical Equipn	nent-J	ActiD	AFF	Unde	erdrai	in, Mi	&E Pro
50%	-164	126		M&E Procurement of Me	chanir	al E	quip	ment	- Actil	DAFF	- Media
100%	-36			M&E Procurement of Mechanical Equipment - RO							
62%	-144	161		M&E Procur					l Fau	inme	nt - BC
	-52	101									
100%	-02			M&E Procurement of Electrical Equipment - CLP Substation for LV Switchboard / Genset / Build	ing Se	IVICE	2 S				
100%	-24			Excavation and Formation Works for 132kV Substation							
100%	-42			Construction of 132kV Substation							
100%	-67			Architectural Finishes for 132kV Substation							
	-30										
100%	-30			M&E Installation of 132kV Substation							
100%	-204			Construction of Combine Shaft							
			1			<u> </u>	<u> </u>				

Itake ES0001070 DN: ES0001080 Rec ES0001110 Cor ES0001120 Arc DutFall Arc ES0001090 DN ES0001090 DN ES0001100 Rec ES0001100 Rec ES0001140 Exc ES0001140 Exc ES0001140 Arc ES0001160 Arc ES0002130 M& ES0002140 M& ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001180 Cor ES0001250 M& Product Water S Exc ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc	cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building &E Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage	Duration 160 163 163 1103 193 32 140 343 97 343 97 393 183 257 137 270 321 106 315 106	03-Jan-22 09-Dec-20 11-Nov-20 21-May-21 30-Nov-21 29-Dec-20 18-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 21-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 23-Nov-21 10-Aug-20 10-Aug-20	11-Jun-22 20-May-21 31-Dec-21 29-Nov-21 31-Dec-21 31-Dec-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 22-Nov-21 03-Oct-22 03-Oct-22	Duration 120 25 262 74 24 49 254 0 56 80 327 192 0 327 192 323 329	Start 16-Jun-22 02-Jul-21 A 22-Mar-21 A 03-Apr-22 24-May-22 01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A 24-Nov-21 A	Finish 13-Oct-22 25-Feb-22 20-Oct-22 15-Jun-22 16-Jun-22 16-Jun-22 12-Oct-22 12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A 29-Apr-22	Complete 0% 98% 60% 0% 0% 55% 55% 100% 98% 0% 100% 10% 100%	Finish Date -124 -281 -293 -198 -198 -107 -308 -321 -308 -321 -129 -171 -129 -120 -156 161 -70 -158	Float 0 0 -15 2 -18 0 -18 0 -18 10 -13 10 -13 13 -13 20 -13 20
ES0001070 DN: ES0001080 Rec ES0001110 Cor ES0001120 Arc DutFall DN: ES0001090 DN ES0001090 DN ES0001090 DN ES0001090 DN ES0001100 Rec Arci Cor ES0001100 Rec ES0001140 Exc ES0001150 Cor ES0002130 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001240 M& Product Water S S ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0002210 M&	eceiving Pit and Marine Intake Structure instruction of Intake Land Structure chitectural Finishes for Intake Land Structure InfoSO Pipe Jacking for Outfall Pipeline eceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF instruction of ActiDAFF instruction of ActiDAFF Structure chitectural Finishes for ActiDAFF RE Installation at ActiDAFF RE Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building instruction of RO Building chitectural Finishes for RO Building RE Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	416 193 32 140 343 97 393 183 257 137 257 137 270 321 106 315	11-Nov-20 21-May-21 30-Nov-21 29-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	31-Dec-21 29-Nov-21 31-Dec-21 25-Nov-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	262 74 24 49 254 0 56 80 327 192 0 192 0 0 88	22-Mar-21 A 03-Apr-22 24-May-22 01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	20-Oct-22 15-Jun-22 16-Jun-22 21-Mar-22 12-Oct-22 12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	60% 0% 0% 75% 55% 100% 98% 0% 1% 0%	-293 -198 -167 -308 -321 -9 -171 -129 -220 -156 161 -70	2 -18 0 -18 10 -13 13 -13 20
ES0001080 Red ES0001110 Cor ES0001120 Arc ES0001120 Arc ES0001090 DN ES0001090 DN ES0001100 Red CtiDAFF ES0001140 ES0001150 Cor ES0001160 Arc ES0001160 Arc ES0002130 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001180 Cor ES0001240 M& FS0001250 M& ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Cor ES0001240 Arc ES0001260 Arc ES0001260 Arc ES0002210 M&	eceiving Pit and Marine Intake Structure instruction of Intake Land Structure chitectural Finishes for Intake Land Structure InfoSO Pipe Jacking for Outfall Pipeline eceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF instruction of ActiDAFF instruction of ActiDAFF Structure chitectural Finishes for ActiDAFF RE Installation at ActiDAFF RE Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building instruction of RO Building chitectural Finishes for RO Building RE Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	416 193 32 140 343 97 393 183 257 137 257 137 270 321 106 315	11-Nov-20 21-May-21 30-Nov-21 29-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	31-Dec-21 29-Nov-21 31-Dec-21 25-Nov-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	262 74 24 49 254 0 56 80 327 192 0 192 0 0 88	22-Mar-21 A 03-Apr-22 24-May-22 01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	20-Oct-22 15-Jun-22 16-Jun-22 21-Mar-22 12-Oct-22 12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	60% 0% 0% 75% 55% 100% 98% 0% 1% 0%	-293 -198 -167 -308 -321 -9 -171 -129 -220 -156 161 -70	2 -18 0 -18 10 -13 13 -13 20
ES0001110 Corr ES0001120 Arcl ES0001090 DN ES0001090 DN ES0001100 Red CtiDAFF ES0001140 ES0001150 Corr ES0001160 Arcl ES0001160 Arcl ES0002130 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001170 Exc ES0001180 Corr ES0001240 M& ES0001250 M& ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001260 Arc ES0001260 Arc ES0002210 M& ES0002210 M&	Instruction of Intake Land Structure chitectural Finishes for Intake Land Structure Info50 Pipe Jacking for Outfall Pipeline aceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF Instruction of ActiDAFF Instruction of ActiDAFF Structure chitectural Finishes for ActiDAFF RE Installation at ActiDAFF RE Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building chitectural Finishes for RO Building Chitectural Finishes for RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	193 193 32 140 343 97 393 183 257 137 270 321 106 315	21-May-21 30-Nov-21 29-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	29-Nov-21 31-Dec-21 17-May-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	74 24 49 254 0 56 80 327 192 0 192 0 0 88	03-Apr-22 24-May-22 01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 22-Apr-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	15-Jun-22 16-Jun-22 21-Mar-22 12-Oct-22 12-Oct-22 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	0% 0% 75% 55% 100% 98% 0% 1% 0% 1%	-198 -167 -308 -321 -9 -171 -129 -220 -156 161 -70	-18 0 -18 10 -13 13 -13 20
ES0001120 Arcl butFall ES0001090 DN ES0001090 DN ES0001100 Red ctiDAFF ES0001140 ES0001150 Cor ES0001160 Arcl ES0001160 Arcl ES0001160 Arcl ES0002130 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001180 Cor ES0001190 Arcl ES0001190 Arcl ES0001190 Cor ES00012150 M& FS0001240 Exc ES0001240 Cor ES0001240 Arcl ES0001240 Exc ES0001240 Exc ES0001240 Arcl ES0001260 Arcl ES0001260 Arcl ES0001260 Arcl ES0001260 Arcl ES0001260 Arcl ES0002210 M&	chitectural Finishes for Intake Land Structure It 650 Pipe Jacking for Outfall Pipeline aceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF onstruction of ActiDAFF onstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building & Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	32 140 343 97 393 183 257 137 270 321 106 315	30-Nov-21 30-Nov-21 29-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	31-Dec-21 17-May-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	24 49 254 0 56 80 327 192 0 0 0 88	24-May-22 01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 10-Mar-22 A 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	16-Jun-22 21-Mar-22 12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	0% 75% 55% 100% 98% 0% 1% 0% 1% 100%	-167 -308 -321 -9 -171 -129 -220 -156 161 -70	0 -18 10 -13 13 -13 20
butFall ES0001090 DN ES0001100 Rec CtiDAFF ES0001140 ES0001150 Cor ES0001150 Cor ES0001160 Arc ES0002130 M& ES0002140 M& ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001190 Arc ES0001180 Cor ES0001250 M& FS0001250 Cor ES0001240 Exc ES0001240 Arc ES0001240 Arc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0002210 M&	A1650 Pipe Jacking for Outfall Pipeline ecciving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF onstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building chitectural Finishes for RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	140 343 97 393 183 257 137 270 321 106 315	29-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 29-Nov-21 16-Nov-20 09-Aug-21 23-Nov-21	17-May-21 25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	49 254 0 56 80 327 192 0 0 88	01-Sep-21 A 08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	21-Mar-22 12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	75% 55% 100% 98% 0% 1% 0% 100%	-308 -321 -9 -171 -129 -220 -156 161 -70	-18 10 -13 13 -13 20
ES0001090 DN ES0001100 Red CtiDAFF ES0001140 ES0001150 Cor ES0001150 Cor ES0001160 Arc ES0002130 M& ES0002140 M& ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001190 Arc ES0001190 Arc ES0001250 M& FS0001240 Exc ES0001240 Cor ES0001240 Arc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001260 Arc ES0001260 Arc ES0002210 M& FODUCT Water F	eceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF onstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building chitectural Finishes for RO Building	343 97 393 183 257 137 270 321 106 315	18-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 29-Nov-21 09-Aug-21 23-Nov-21	25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	254 0 56 80 327 192 0 0 88	08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	55% 100% 98% 0% 1% 0% 100%	-321 -9 -171 -129 -220 -156 161 -70	10 -13 -13 -13 20
ES0001100 Red CtiDAFF ES0001140 ES0001150 Cor ES0001150 Arc ES0001160 Arc ES0002130 M& ES0002140 M& ES0002140 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001190 Arc ES0001190 Arc ES00012150 M& roduct Water S ES0001240 ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc ES0001260 Arc	eceiving Pit, Outfall and Diffuser Pipeline cavation for ActiDAFF onstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building chitectural Finishes for RO Building	343 97 393 183 257 137 270 321 106 315	18-Dec-20 18-Dec-20 02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 29-Nov-21 09-Aug-21 23-Nov-21	25-Nov-21 06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	254 0 56 80 327 192 0 0 88	08-Apr-21 A 22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	12-Oct-22 15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	55% 100% 98% 0% 1% 0% 100%	-321 -9 -171 -129 -220 -156 161 -70	10 -13 -13 -13 20
ctiDAFF S0001140 Exc S0001150 Cor S0001160 Arc S0002130 M& S0002140 M& S0002140 M& ES0002140 M& ES0002140 M& ES0002140 M& ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001190 Cor ES00012150 M& FODUCT Water S S0001240 ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0001260 M& ES0001260 M&	cavation for ActiDAFF onstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building & Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	97 393 183 257 137 270 321 106 315	02-May-20 11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	06-Aug-20 08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	0 56 80 327 192 0 0 88	22-Apr-20 A 10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	15-Aug-20 A 28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	100% 98% 0% 1% 0% 100%	-9 -171 -129 -220 -156 161 -70	-13 13 -13 20
ES0001140 Exc ES0001150 Cor ES0001160 Arc ES0002130 M& ES0002140 M& ES0002140 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001190 Cor ES00012150 M& FODUCT Water S ES0001240 ES0001250 Cor ES0001260 Arc ES0001260 M& ES0001260 M& ES0002210 M&	enstruction of ActiDAFF Structure chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building & Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	393 183 257 137 270 321 106 315	11-Sep-20 07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	08-Oct-21 05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	56 80 327 192 0 0 88	10-Aug-20 A 24-Feb-22 22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	28-Mar-22 14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	98% 0% 1% 0% 100%	-171 -129 -220 -156 161 -70	13 -13 20
ES0001160 Arcl ES0002130 M& ES0002140 M& ES0002140 M& ES0002140 M& ES0001170 Exc ES0001170 Exc ES0001180 Cor ES0001190 Arcl ES0001190 Arcl ES0001190 Cor ES00012150 M& ES0001240 Exc ES0001240 Exc ES0001250 Cor ES0001260 Arcl ES0001260 M& ES0002210 M& ES0002210 M&	chitectural Finishes for ActiDAFF & Installation at ActiDAFF & Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building & Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	183 257 137 270 321 106 315	07-Jul-21 28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	05-Jan-22 11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	80 327 192 0 0 88	24-Feb-22 22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	14-May-22 17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	0% 1% 0% 100% 100%	-129 -220 -156 161 -70	13 -13 20
ES0002130 M& ES0002140 M& ES0002140 M& everse Osmos SO ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0001190 M& FODUCT Water S SO ES0001240 Exc ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0001260 M& ES0002210 M&	 AE Installation at ActiDAFF AE Installation of Filter Water Tank and Pumping Station asis Building cavation at RO Building construction of RO Building chitectural Finishes for RO Building AE Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk 	257 137 270 321 106 315	28-Sep-21 29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	11-Jun-22 14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	327 192 0 0 88	22-Jan-22 A 10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	17-Jan-23 17-Sep-22 10-Oct-20 A 11-Dec-21 A	1% 0% 100% 100%	-220 -156 161 -70	-13 20
ES0002140 M& everse Osmos S ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0002150 M& roduct Water S S ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001240 Exc ES0001250 Cor ES0001260 Arc ES0001260 M& ES0002210 M&	AE Installation of Filter Water Tank and Pumping Station sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building AE Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	137 270 321 106 315	29-Nov-21 24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	14-Apr-22 20-Mar-21 02-Oct-21 22-Nov-21	192 0 0 88	10-Mar-22 18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	17-Sep-22 10-Oct-20 A 11-Dec-21 A	0% 100% 100%	-156 161 -70	20
everse Osmos S0001170 Exc S0001180 Cor S0001190 Arc S0002150 M& roduct Water S S0001240 S0001250 Cor S0001240 Exc S0001250 Cor S0001260 Arc S0001260 M& S0001260 M& S0001260 M& S0001260 M&	sis Building cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building & Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	270 321 106 315	24-Jun-20 16-Nov-20 09-Aug-21 23-Nov-21	20-Mar-21 02-Oct-21 22-Nov-21	0 0 88	18-Jun-20 A 25-Aug-20 A 20-Sep-21 A	10-Oct-20 A 11-Dec-21 A	100%	161 -70	
ES0001170 Exc ES0001180 Cor ES0001190 Arc ES0002150 M& roduct Water S S0001240 ES0001250 Cor ES0001260 Arc ES0001260 Arc ES0001260 M& ES0001260 M& ES0001260 M& ES0001260 M& ES0001260 M&	cavation at RO Building onstruction of RO Building chitectural Finishes for RO Building &E Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	321 106 315	16-Nov-20 09-Aug-21 23-Nov-21	02-Oct-21 22-Nov-21	0	25-Aug-20 A 20-Sep-21 A	11-Dec-21 A	100%	-70	49
ES0001180 Cor ES0001190 Arcl ES0002150 M& roduct Water S S0001240 ES0001250 Cor ES0001260 Arcl ES0001260 Arcl ES0001260 Arcl ES0001260 M& ES0001260 M& ES0001260 M& ES0001260 M&	onstruction of RO Building chitectural Finishes for RO Building &E Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	321 106 315	16-Nov-20 09-Aug-21 23-Nov-21	02-Oct-21 22-Nov-21	0	25-Aug-20 A 20-Sep-21 A	11-Dec-21 A	100%	-70	49
S0001190 Arcl S0002150 M& roduct Water S S0001240 S0001240 Exc S0001250 Cor S0001260 Arcl S0001260 M& S0001260 M& S0001260 M& S0001260 M& S0001260 M&	chitectural Finishes for RO Building &E Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	106 315	09-Aug-21 23-Nov-21	22-Nov-21	88	20-Sep-21 A				49
ES0002150 M& roduct Water S ES0001240 Exc Tan ES0001250 Cor ES0001260 Arc ES0002210 M& roduct Water P	&E Installation of RO Building Storage Tank cavation and Soil Nail System for Product Water Storage nk	315	23-Nov-21			·	29-Apr-22	45%	-158	49
roduct Water S S0001240 Exc Tan S0001250 Cor S0001260 Arc S0002210 M& roduct Water P	Storage Tank cavation and Soil Nail System for Product Water Storage nk			03-Oct-22	329	24-Nov-21 A	1			
S0001240 Exc Tan S0001250 Cor S0001260 Arc S0002210 M& roduct Water P P	cavation and Soil Nail System for Product Water Storage nk	106	10-400-20				26-Dec-22	12.7%	-84	9
Tan S0001250 Cor S0001260 Arcl S0002210 M& roduct Water P P	nk	106		00 Nov 00	0	0.4 km 00 A	01-Dec-20 A	1000/		
S0001260 Arc S0002210 M& roduct Water P		070		23-Nov-20	0	24-Jun-20 A		100%	-8	
S0002210 M&	-	276	24-Nov-20	26-Aug-21	0	21-Oct-20 A	18-Dec-21 A	100%	-114	
roduct Water P	chitectural Finishes for Product Water Storage Tank	70	27-Aug-21	04-Nov-21	50	22-Feb-22	12-Apr-22	0%	-159	25
	E Installation of Product Water Tank	78	12-Jan-22	30-Mar-22	179	31-Jul-21 A	29-Jul-22	30%	-121	103
	Pumping Station cavation for Product Water Pump Station	47	22-Oct-20	07-Dec-20	0	08-Mar-21 A	07-Apr-21 A	100%	-121	
S0001280 Cor	Instruction of Product Water Pump Station	270	22-Jan-21	18-Oct-21	0	17-Apr-21 A	18-Dec-21 A	100%	-61	
S0001290 Arc	chitectural Finishes for Product Water Pumping Station	106	25-Sep-21	08-Jan-22	96	10-Feb-22	16-May-22	0%	-128	32
S0002215 M&	&E Installation of Product Water Pump Station	78	12-Jan-22	30-Mar-22	230	25-Mar-22	09-Nov-22	0%	-224	1
hemical Buildi	ing									
	cavation for Chemical Building	42	12-Aug-20	22-Sep-20	0	17-Jun-21 A	17-Jul-21 A	100%	-298	
S0001310 Cor	onstruction of Chemical Building	255	23-Sep-20	04-Jun-21	49	17-Jul-21 A	21-Mar-22	80%	-290	2
S0001320 Arc	chitectural Finishes for Chemical Building	73	05-Jun-21	16-Aug-21	53	22-Mar-22	13-May-22	0%	-270	5
S0002220 M&	&E Installation of Chemical Building	264	02-Sep-21	23-May-22	162	21-Apr-22	29-Sep-22	0%	-129	0
		440	40.0.100					1000		
	ing Works for Administration Building	110	19-Oct-20	05-Feb-21	0	03-Oct-20 A	16-Jan-21 A	100%	20	
	cavation for Administration Building	31	06-Feb-21	08-Mar-21	0	28-Dec-20 A	15-Mar-21 A	100%	-7	
	onstruction of Administration Building	339	09-Mar-21	10-Feb-22	175	28-Jan-21 A	25-Jul-22	60%	-165	0
	chitectural Finishes for Administration Building	204	26-Aug-21	17-Mar-22	194	24-Feb-22	05-Sep-22	0%	-172	0
	E Installation of Admin Building	184	16-Nov-21	18-May-22	207	02-Apr-22	25-Oct-22	0%	-160	-13
uilding Service S0002270 M&			18-Mar-22	11-Aug-22						

📃 🛛 Actual Work 💠 Milestone Critical Bar

AJC JOINT VENTURE

D	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planne Finish	d Actual % Complete	Variance Finish Date	Total Float
S0002280	M&E Installation of Building Services	676	27-Nov-20	03-Oct-22	448	01-Dec-20 A	24-Apr-23	11%	-203	11
SCG Build	ling									
S0001400	Excavation for On-site Chlorine Generation Building	25	11-Dec-20	04-Jan-21	11	01-Apr-21 A	11-Feb-22	98%	-403	19
S0001410	Construction of On-site Chlorine Generation Building	291	05-Jan-21	22-Oct-21	44	05-Jul-21 A	16-Mar-22	70%	-145	19
S0001420	Architectural Finishes for On-site Chlorine Generation Building	59	23-Oct-21	20-Dec-21	60	28-Feb-22	28-Apr-22	0%	-129	44
S0002200	BS Installation of On-site Chlorine Generation Building (DG inspection)	162	21-Dec-21	31-May-22	106	26-Apr-22	09-Aug-22	0%	-70	18
	ent Building	400	10 5 00			00 D 00 A		4000	101	
S0001210	Excavation and ELS for Post Treatment Building	126	19-Dec-20	23-Apr-21	0	03-Dec-20 A	01-Sep-21 A	100%	-131	
S0001220	Construction of Post Treatment Building	209	14-Apr-21	08-Nov-21	38	17-Dec-20 A	10-Mar-22	90%	-122	46
S0001230	Architectural Finishes for Post Treatment Building	59	11-Oct-21	08-Dec-21	77	11-Feb-22	28-Apr-22	0%	-141	34
S0002180	M&E Installation of Post Treatment Building	199	09-Dec-21	25-Jun-22	217	08-Apr-22	10-Nov-22	0%	-138	0
ludge Thic S0001680	ckener Excavation and ELS for Sludge Thickener	73	19-Apr-21	30-Jun-21	0	02-Oct-21 A	16-Oct-21 A	100%	-108	
S0001690	Construction of Sludge Thickener	121	02-Jul-21	30-Oct-21	68	08-Oct-21 A	09-Apr-22	38%	-161	4
S0001700		44	01-Nov-21	14-Dec-21	23				-152	50
S0001700	Architectural Finishes for Sludge Thickener M&E Installation of Sludge Thickener	141	15-Dec-21	04-May-22	129	23-Apr-22 16-May-22	15-May-22 21-Sep-22	0%	-132	50
/orkshop S0001560	Excavation for Workshop	7	21-May-21	27-May-21	7	25-Mar-22	31-Mar-22	0%	-308	1
S0001570	Construction of Workshop	179	28-May-21	22-Nov-21	183	01-Apr-22	30-Sep-22	0%	-312	3
S0001580	Architectural Finishes for Workshop	81	17-Nov-21	05-Feb-22	69	29-Aug-22	05-Nov-22	0%	-273	2
spection (Corridor									
S0001590	Piling for Elevated Walkway	60	09-Jan-21	09-Mar-21	0	15-Dec-20 A	19-Jan-21 A	100%	49	
S0001600	Excavation for Inspection Corridor	121	14-Apr-21	12-Aug-21	67	26-Mar-21 A	08-Apr-22	60%	-239	-14
S0001610	Construction of Inspection Corridor	299	06-May-21	28-Feb-22	200	12-Apr-21 A	19-Aug-22	33%	-172	-15
S0001620	Architectural Finishes for Inspection Corridor	99	08-Feb-22	17-May-22	85	05-Aug-22	28-Oct-22	0%	-164	8
	cal and Central Chiller Plant Building									
S0001430	Excavation for Main Electrical and Central Chiller Plant Building	20	11-Jan-21	30-Jan-21	0	18-Jan-21 A	06-Feb-21 A	100%	-7	
S0001440	Construction of Main Electrical and Central Chiller Plant Building	227	01-Feb-21	15-Sep-21	0	01-Feb-21 A	20-Oct-21 A	100%	-35	
S0001450	Architectural Finishes for Main Electrical and Central Chiller Plant Building	99	20-Jul-21	26-Oct-21	46	06-Nov-21 A	18-Mar-22	18%	-143	3
S0002260	M&E Installation of LV/HV Cabling and Field Panels	152	25-Jan-22	25-Jun-22	143	03-May-22	22-Sep-22	0%	-89	14
uard Hous S0001490	se Excavation for Guard House at Main Gate	7	15-Sep-21	21-Sep-21	7	10-Mar-22	16-Mar-22	0%	-176	22
S0001500	Construction of Guard House at Main Gate	149	23-Sep-21	18-Feb-22	119	17-Mar-22	13-Jul-22	0%	-145	21
			· ·							
S0001510	Architectural Finishes for Guard House at Main Gate	76	19-Feb-22	05-May-22	62	14-Jul-22	13-Sep-22	0%	-131	30
S0001520	Excavation for Guard House near Pier	8	21-May-21	28-May-21	11	30-Apr-22	10-May-22	0%	-347	4
S0001530	Construction of Guard House near Pier	147	29-May-21	22-Oct-21	113	11-May-22	31-Aug-22	0%	-313	5
S0001540	Architectural Finishes for Guard House near Pier	74	23-Oct-21	04-Jan-22	73	01-Sep-22	12-Nov-22	0%	-312	139
<mark>02 Tank</mark> S0001370	Filling to Formation for CO2 Tanks Area	29	22-Jun-21	20-Jul-21	0	14-Dec-21 A	17-Dec-21 A	100%	-150	
S0001380	Construction of CO2 Tanks Area	116	21-Jul-21	13-Nov-21	36	21-Dec-21 A	08-Mar-22	60%	-115	109
S0002170	M&E Installation of CO2 Tank	84	27-Jan-22	20-Apr-22	126	19-Mar-22	22-Jul-22	0%		155
incol Emor	rgency Generator									
ESET Emer S0002250	M&E Diesel Emergency Generator	57	25-Feb-22	22-Apr-22	115	24-May-22	15-Sep-22	0%	-146	14
										<u> </u>

Critical Bar

Target Bar

y ID	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planned Finish	Actual % Complete	Variance Finish Date	Total Float
Switch Roo	m and Transformer Installation									
ES0002300	M&E Installation of HV/LV Switchroom and Transformer	242	16-Nov-21	15-Jul-22	187	14-May-22	16-Nov-22	0%	-124	110
Miscellaneo										
ES0001630	Remaining Architectural Finishes for All Buildings	322	11-Jan-22	28-Nov-22	314	02-Jul-22	11-May-23	0%	-164	36
ES0001640	External Process and Non-Process Pipe	655	18-Dec-20	03-Oct-22	322	27-May-21 A	19-Dec-22	12%	-77	-9
ES0001650	Drainage and Cable Duct	518	04-Jun-21	03-Nov-22	184	14-Mar-22	13-Sep-22	0%	51	23
ES0001660	Slope Mitigation and Maintenance Access	684	23-Nov-20	07-Oct-22	490	28-Sep-21 A	05-Jun-23	2%	-241	81
ES0001670	Landscaping Works	469	28-Oct-21	08-Feb-23	233	13-Oct-22	02-Jun-23	0%	-114	18
ES0002290	M&E PV Panels	215	23-Nov-21	25-Jun-22	134	17-May-22	27-Sep-22	0%	-94	31
ES0002310	M&E Chiller & Irrigation System Installation	298	27-Oct-21	20-Aug-22	199	19-Mar-22	03-Oct-22	0%	-44	3
ES0002350	M&E Installation of Surge Vessel	70	24-Feb-22	04-May-22	285	14-Jun-22	25-Mar-23	0%	-325	18
ES0002360	M&E Installation of Flowmeter Pit	70	24-Feb-22	04-May-22	65	14-Jun-22	17-Aug-22	0%	-105	72
ES0002370	M&E Installation of Static Mixer Pit	42	27-Jan-22	09-Mar-22	37	27-Jun-22	02-Aug-22	0%	-146	87
ES0002380	M&E Installation of Drainage Pit	30	23-Nov-21	22-Dec-21	32	20-May-22	20-Jun-22	0%	-180	101
ES0002390	M&E Installation of Thickened Sludge Holding Tank	42	09-Dec-21	19-Jan-22	44	08-Apr-22	21-May-22	0%	-122	160
Statutory Su	ubmission & Inspection									
ES0002330	Statutory Submission & Inspection	1148	11-Jan-20	03-Mar-23	511	03-Dec-19A	26-Jun-23	57%	-115	1
Testing and	Commissioning									
ES0002400	M&E Precomissioning	229	12-Jun-22	26-Jan-23	237	21-Sep-22	15-May-23	0%	-109	-18
ES0002410	M&E Commissioning	213	04-Jul-22	01-Feb-23	224	12-Oct-22	23-May-23	0%	-111	-18
ES0002420	M&E Performance Test	40	02-Feb-23	13-Mar-23	130	24-May-23	30-Sep-23	0%	-201	-18

Appendix B

Overview of Desalination Plant in Tseung Kwan O

	1	1.7	11/17-	///	C Copyright by Black & Vertch Hong Kong Limited
847-000	1	14	1)))	, /	LEGEND:
	1	11	SS1 /		BOUNDARY OF SENT
	())))/	[]//		LANDFILL EXTENSION BOUNDARY OF WORKS AREA FOR
	1		1º		TKO DESALINATION PLANT
))			HHL.		GLA-TSK 692 ALLOCATED LAND BOUNDARIES
$\langle \langle \rangle$	4	tt	H.	>	NOTE: TEMPORARY WORKS AREA 1 WILL BE
+	_	K			HANDED OVER AT +6 MPD WITH A TOLERANCE OF ±500mm.
1		2	>)))////	<u> </u>	
1	/			1177	
	-	//	////	1111	
1		//	15		
7	1	/	716		
17	$\langle \rangle$		-ll'	AHB	
				JUN	
1	1	1/			
1	1		(.	ME	
1	/	11			
Y	1	5	\square	STIM	
1)		////////	
1	110	This .			
11111	Ŵ		1 Milegins	Mua	
					B 10/03 UPDATE NOTES YLC
					A 07/18 UPDATE COORDINATES YLC Revision Date Description Initial
					Designed Checked Drawn Checked
					Initial YLC CKH SZ WLS Date 02/18 02/18 02/18 02/18
					Approved
					ansmallo
					Agreement No. CE 8/2015 (WS)
	ſ	POINT	EASTING	NORTHING	Contract No.
		А	846581.93	814505.03	13/WSD/17
		В	846610.11	813979.23	Contract Title DESIGN. BUILD AND OPERATE
	1		010010.11		
		С	846614.73	813975.12	DESIGN, BUILD AND OPERATE FIRST STAGE OF TSEUNG KWAN O DESALINATION PLANT
		C D		813975.12 813997.84	FIRST STÁGE OF TSEUNG KWAN O DESALINATION PLANT
			846614.73		DESALINATION PLANT
		D	846614.73 846629.09	813997.84	DESALINATION PLANT
A (D E	846614.73 846629.09 846644.75	813997.84 813986.74	DESALINATION PLANT
	· · · · · · · · · · · · · · · · · · ·	D E F	846614.73 846629.09 846644.75 846646.80	813997.84 813986.74 813985.28	DESALINATION PLANT
	· · · · · · · · · · · · · · · · · · ·	D E F G	846614.73 846629.09 846644.75 846646.80 846646.80 846677.24	813997.84 813986.74 813985.28 814034.67	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. Revision
		D E F G H	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56	813997.84 813986.74 813985.28 814034.67 814028.89	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B
		D E F G H	846614.73 846629.09 846644.75 846646.80 846646.80 846677.24 846686.56 846766.21	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. Revision
		D E F G H J	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 846766.21 846459.65	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11 814405.63	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scele A1 1 : 1500 A3 1 : 3000 水務署
		D E F G H I J	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 846766.21 846766.21 846459.65 846578.45	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scole A1 1 :: 1500 A3 1 :: 3000 水務署 Water Supplies
		D E F G H I J K L	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 8466766.21 8466578.45 8466578.45 846613.89	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11 814405.63	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scele A1 1 : 1500 A3 1 : 3000 水務署
		D F G H J K L M	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 8466766.21 846659.65 846578.45 846613.89 846614.60	813997.84 813986.74 813985.28 814034.67 814028.89 814028.89 814158.11 814448.83 814048.11 814405.63 814117.96	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scole A1 1 :: 1500 A3 1 :: 3000 水務署 Water Supplies

CODE	NAME OF BUILDING	TOTAL G.F.A. (m ²)	SITE COVERAGE (m ²)
В	COMBINE SHAFT	759.876	759.876
с	ACTIDAFF	10027.547	5455 <u>.</u> 346
G	REVERSE OSMOSIS BUILDING AND ELECTRICAL BUILDING	4511,455	5367,935
н	CO2 TANKS AREA	-	-
J	PRODUCT WATER STORAGE TANK, PUMP STATION AND ELECTRICAL BUILDING	1974.610	2933.980
к	SLUDGE TREATMENT BUILDING, TANK AND PUMP ROOM	2531.044	1228.361
м	ADMINISTRATION BUILDING & ELECTRICAL BUILDING C	2459.713	1114_062
N	MAIN ELECTRICAL AND CENTRAL CHILLER PLANT BUILDING	-	459.893
R1	ELECTROCHLORINATION BUILDING & ELECTRICAL BUILDING A	657.992	825.776
S	132 KV SUBSTATION	-	943.560
Т	IRRIGATION WATER TANK AND PUMP ROOM	-	156.148
R2	CHEMICAL BUILDING	813.056	813.056
٧	VISITOR GALLERY	1330.410	1330.410
X1	GUARD HOUSE AND FS CONTROL ROOM	39.585	39.585
X2	GUARD HOUSE	22.035	22.035
Y	R + D OUTDOOR	-	-
z	WASTE WATER TREATMENT PLANT	48.000	48.000
	TOTAL =	25175.323	21498.023

Appendix C

Summary of Implementation Status of Environmental Mitigation

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Imple Stage		tation	Implementation	Relevant Legislation & Guidelines
Reference	Mitigation Measures	main concerns to address	Implementation Agent	D	С	0	status	
Air Quality	y	•				-		
S4.8.1	Impervious dust screen or sheeting will be provided to enclose scaffolding from the ground floor level of building for construction of superstructure of the new buildings.	Land site/ During Construction	Contractor(s)		-		Implemented	Air Pollution Control (Construction Dust)
S4.8.1	Impervious sheet will be provided for skip hoist for material transport.	Land site/ During Construction, particularly dry season	Contractor(s)		•		NA	
S4.8.1	The area where dusty work takes place should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after dusty activities as far as practicable.	Land site/ During Construction	Contractor(s)		-		Implemented	
S4.8.1	All dusty materials should be sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation.	Land site/ During Construction	Contractor(s)		•		Implemented	
S4.8.1	Dropping heights for excavated materials should be controlled to a practical height to minimize the fugitive dust arising from unloading.	Land site/ During Construction	Contractor(s)		1		Implemented	
S4.8.1	During transportation by truck, materials should not be loaded to a level higher than the side and tail boards, and should be dampened or covered before transport.	Land site/ During Construction	Contractor(s)		~		Implemented	
S4.8.1	Wheel washing device should be provided at the exits of the work sites. Immediately before leaving a construction site, every vehicle shall be washed to remove any dusty material from its body and wheels as far as practicable.	Land site/ During Construction	Contractor(s)		-		Implemented	
S4.8.1	Road sections between vehicle-wash areas and vehicular entrance will be paved.	Land site/ During Construction	Contractor(s)		~		Implemented	
S4.8.1	Hoarding of not less than 2.4m high from ground level will be provided along the length of the Project Site boundary.	Land site/ During construction	Contractor(s)	•	-		N/A	
S4.8.1	Haul roads will be kept clear of dusty materials and will be sprayed with water so as to maintain the entire road surface wet at all times.	Land site/ During construction	Contractor(s)		•		Implemented	

	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Imple Stage		ation	Implementation	Relevant Legislation & Guidelines
Reference	Μιτισστιοή Μοσεμέρος	main concerns to address	Implementation Agent	D	C	0	status	
S4.8.1	Temporary stockpiles of dusty materials will be either covered entirely by impervious sheets or sprayed with water to maintain the entire surface wet all the time.	Land site/ During construction	Contractor(s)		•		Implemented	
S4.8.1	Stockpiles of more than 20 bags of cement, dry pulverised fuel ash and dusty construction materials will be covered entirely by impervious sheeting sheltered on top and 3-sides.	Land site/ During construction	Contractor(s)		-		N/A	
S4.8.1	All exposed areas will be kept wet always to minimise dust emission.	Land site/ During construction	Contractor(s)		1		Implemented	
S4.8.1	Ultra-low-sulphur diesel (ULSD) will be used for all construction plant on-site, as defined as diesel fuel containing not more than 0.005% sulphur by weight) as stipulated in Environment, Transport and Works Bureau Technical Circular (ETWB-TC(W)) No 19/2005 on Environmental Management on Construction Sites.	Land site/During construction/ During Operation	Contractor(s)		•	•	Implemented	Environment, Transport and Works Bureau Technical Circular (ETWB- TC(W)) No 19/2005 on Environmental Management on Construction Sites
S4.8.1	The engine of the construction equipment during idling will be switched off.	Land site/ During construction	Contractor(s)		1		Implemented	
S4.8.1	Concrete batching plant will be required on site. control measures recommended in the Guidance Note on a Best Practicable Means for Cement Works (Concrete Batching Plant) (BPM 3/2 (93)) will be implemented. The control measures recommended in the Guidance Note on a Best Practicable Means for Cement Works (Concrete Batching Plant) (BPM 3/2 (93)) will be implemented.		Contractor(s)		•		N/A	
S4.8.1	Regular maintenance of construction equipment deployed on- site will be conducted to prevent black smoke emission.	Land site/ During construction	Contractor(s)		•		Implemented	
S4.10	To ensure proper implementation of the recommended dust mitigation measures and good construction site practices during the construction phase, environmental site audits on weekly basis is recommended throughout the construction period.	Land site/ During construction	Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		•		Implemented	

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Imple Stage	ementa	tion	Implementation status	Relevant Legislation	
	Mitigation Measures	main concerns to address		D	C	0		& Guidelines	
Noise				-	1 4	1	I	1	
S5.7	Only well-maintained plant will be operated on-site and plant will be serviced regularly during the construction phase.	All area/ During construction	Contractor(s)		~		Implemented	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Silencers or mufflers on construction equipment will be utilised and will be properly maintained during the construction phase.	Noise control/ During construction	Contractor(s)		~		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Mobile plant, if any, will be sited as far away from NSRs as possible.	Noise control/ During construction	Contractor(s)		~		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Machines and plant (such as trucks) that may be in intermittent use will be shut down between work periods or will be throttled down to a minimum.	Noise control/ During construction	Contractor(s)		~		Implemented	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Plants known to emit noise strongly in one direction will, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Noise control/ During construction	Contractor(s)		-		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Material stockpiles and other structures will be effectively utilised, wherever practicable, in screening noise from on-site construction activities.	Noise control/ During construction	Contractor(s)		•		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Use of Quite Powered Mechanical Equipment (QPME).	Noise control/ During construction	Contractor(s)		1		Implemented	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Movable noise barriers of 3m in height with skid footing should be used and located within a few metres of stationary plant and mobile plant such that the line of sight to the NSR is blocked by the barriers. The length of the barrier should be at least five times greater than its height. The noise barrier material should have a superficial surface density of at least 7 kg m ⁻² and have no o or gappeningss.	Noise control/ During construction	Contractor(s)		•		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	The noise insulating sheet should be deployed such that there would be no opening or gaps on the joints.	Noise control/ During construction	Contractor(s)		•		N/A	A Practical Guide for the Reduction of Noise from Construction Works,	
S5.7	Construction activities (e.g. excavation/shoring, reinstatement	Noise control/	Contractor(s)	✓	✓	1	Implemented	A Practical Guide for	

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	recommended measures & implement		Implementation Stage			Implementation status	A Practical Guide for
Kelel ente		main concerns to address		D	С	0		
	(asphalt), and pipe jacking) will be planned and carried out in sequence, such that items of PME proposed for these activities will not be operated simultaneously.	During construction						Noise from Construction Works
55.7	PMEs will not be used at the works areas near educational institutions with residual impact (ie the "influence area" within a radius of 40m) during school hours in order to reduce impact to the educational institutions.	Noise control / During construction	Contractor(s)		✓		N/A	the Reduction of Noise from
\$5.7	Noise enclosures or acoustic sheds would be used to cover stationary PME such as generators. Portable/Movable noise enclosure made of material with superficial surface density of at least 7 kg m ⁻² may be used for screening the noise from operation of the saw/groover, concrete.	Noise control/ Pre- construction/ During construction	Contractor(s)	~	*		N/A	
S5.9	Sawcutting pavement, breaking up of pavement, excavation /shoring, pipe laying, backfilling, reinstatement (concrete) and pipe jacking shall be scheduled outside the examination period.	Noise control/ Pre- construction/ During construction	Contractor(s)	~	•		N/A	
S5.9	In view the duration of noise exceedance at Creative Secondary School, PLK Laws Foundation College, TKO Kei Tak Primary School and School of Continuing and Professional Studies-CUHK is limited to 8 weeks, the construction work in the influence areas near the four schools shall be scheduled during long school holidays (eg summer holiday, Easter holiday or Christmas holiday, etc) as far as practicable. Scheduling the construction work for the four schools.	Noise control/ Pre- construction/ During construction	Contractor(s)	~	√		N/A	
\$5.10	A noise monitoring programme shall be implemented for the construction phase.	Designated monitoring stations as defined in EM&A Manual/During construction phase	Environmental Team (ET)		•		N/A	
55.10	The effectiveness of on-site control measures could also be evaluated through the regular site audits.	All facilities/ During construction	Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		-		Implemented	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommender measures & main concerns to	i Implementation Agent	Impler Stage			Implementation status	Relevant Legislation & Guidelines
	Ficusures/ Millation Measures	address	ngent	D	С	0		Guidennes
Water Quality	F		1				1	
S6.9	Dredged marine sediment will be disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO).	Marine Dredging/ During construction	Contractor(s)		~		Implemented	Dumping at Sea Ordinance (DASO)
S6.9	Disposal vessels will be fitted with tight bottom seals in order to prevent leakage of material during transport.	Marine Dredging/ During construction	Contractor(s)		•		Implemented	-
S6.9	Barges will be filled to a level, which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action.	Marine Dredging/ During construction	Contractor(s)		•		Implemented	-
S6.9	After dredging, any excess materials will be cleaned from decks and exposed fittings before the vessel is moved from the dredging area.	Marine Dredging/ During construction	Contractor(s)		•		Implemented	-
S6.9	All vessels should be well maintained and inspected before use to limit any potential discharges to the marine environment.	Marine Dredging/ During construction	Contractor(s)		•		Implemented	-
S6.9	All vessels must have a clean ballast system.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
\$6.9	No discharge of sewage/grey wastewater should be allowed. Waste water from potentially contaminated area on working vessels should be minimized and collected. These kinds of wastewater should be brought back to port and discharged at appropriate collection and treatment system.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	No soil waste is allowed to be disposed overboard.	Marine Dredging/ During construction	Contractor(s)		~		N/A	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	measures & main concerns to	Implementation	Implen Stage	nentati		Implementation status	Relevant Legislation & Guidelines
S6.9	Silt removal facilities such as silt traps or sedimentation facilities will be provided to remove silt particles from runoff to meet the requirements of the TM standard under the WPCO. The design of silt removal facilities will be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures will be inspected on a regular basis	Land site & drainage/ During construction	Agent Contractor(s)	D	C ✓	0	Implemented	ProPECC PN 1/94 TM Standard under the WPCO
S6.9	and maintained to confirm proper and efficient Earthworks to form the final surfaces will be followed up with surface protection and drainage works to prevent erosion caused by rainstorms.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9	Appropriate surface drainage will be designed and provided where necessary.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9	The precautions to be taken at any time of year when rainstorms are likely together with the actions to be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94.	Land site & drainage/ During construction	Contractor(s)	Ý	~		Implemented	ProPECC PN 1/94
S6.9	Oil interceptors will be provided in the drainage system where necessary and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages.	Land site & drainage/ During construction	Contractor(s)		~		N/A	-
S6.9	Temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge, if any, will be adequately designed for the controlled release of storm flows.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9	The temporary diverted drainage, if any, will be reinstated to the original condition when the construction work has finished or when the temporary diversion is no longer required.	Land site & drainage/ During construction	Contractor(s)		•		N/A	-
S6.9	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment.	During construction	Contractor(s)		~		Implemented	-

EIA Reference	Recommended Environmental Protection	Objectives of the recommended measures & main concerns to	Implementation	Imple Stage	mentat	ion	Implementation status	Relevant Legislation & Guidelines
	Measures/ Mitigation Measures	address	Agent	D	С	0		Guidennes
S6.9 and S6.12	The sterilization water should be dechlorinated with total residual chlorine (TRC) level below 1 mg/L before discharge to public sewer. In situ testing of TRC should also be conducted for the discharge of chlorinated water for pipeline disinfection to ensure sufficient dechlorination before discharge to public sewer.	mains prior to commissioning	Contractor(s)		•		N/A	Technical Memorandum for Effluents Discharged into Drainage and Sewerage Systems Inland and Coastal Waters
\$6.9	The cleaning and flushing water should also be treated and desilted to the relevant discharge requirement stipulated in TM-DSS before discharging.		Contractor(s)		-	•	N/A	Technical Memorandum for Effluents Discharged into Drainage and Sewerage Systems Inland and Coastal Waters
\$6.9	Site drainage should be well maintained and good construction practices should be observed to ensure that oil, fuels, solvents and other chemicals are managed, stored and handled properly and do not enter the nearby water streams.	construction/During operation	Contractor(s)		-	 ✓ 	Implemented	-
S6.12	Regular site inspections will be carried out in order to confirm that regulatory requirements are being met and that contractors are implementing the standard site practice and mitigation measures as proposed to reduce potential impacts to water quality.		Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		•		Implemented	-

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent	Implen Stage	nentat		Implementation Status	Relevant Legislation & Guidelines
	5	main concerns to address	Agent	D	С	0		Guidennes
Waste Manager						T		1
S8.5	Nomination of approved personnel to be responsible for standard site practices, arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the site.	Contract mobilisation/ During construction	Contractor(s)		V		Implemented	-
S8.5	Training of site personnel in proper waste management and chemical handling procedures. Training will be provided to workers on the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling at the beginning of the construction works.	Contract mobilisation/ During construction	Contractor(s)		•		Implemented	-
\$8.5	Provision of sufficient waste disposal points and regular collection for disposal.	All area/ During construction/ During operation	Contractor(s)		~	~	Implemented, reminder issued	DEVB TC(W) No. 8/2010, Enhanced Specification for Site Cleanliness and Tidiness.
S8.5	Appropriate measures to reduce windblown litter and dust transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	All area/ During construction	Contractor(s)		•		Implemented	DEVB TC(W) No. 8/2010, Enhanced Specification for Site Cleanliness and Tidiness.
S8.5	A waste management plan (WMP) as stated in the <i>"ETWB TC(W) No. 19/2005, Environmental Management on Construction Sites"</i> for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established and implemented during the construction phase as part of the Environmental Management Plan (EMP). The Contractor will be required to prepare the EMP and submits it to the Architect/ Engineer under the Contract for approval prior to implementation.	All area/ During construction	Contractor(s)		•		Implemented	ETWB TC(W) No. 19/2005 Environmental Management on Construction Sites
\$8.5	Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre at Tsing Yi.	All area/ During construction	Contractor(s)		✓		Implemented	Chapters 2 & 3 Code of Practice on the Packaging, Labelling & Storage of Chemical Wastes published under the Waste Disposal Ordinance (Cap 354), Section 35
S8.5	Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.	Land site/ During construction	Contractor(s)		~		Implemented	Waste Disposal Ordinance (Cap 354)

EIA Reference	Recommended Environmental Protection Measures/		Implementation	Implen Stage	nentati	on	Implementation Status	Relevant Legislation & Guidelines DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials WBTC 32/92, The Use of Tropical Hard Wood on Construction Site ETWB TCW No. 33/2002, Management of Construction and Demolition Material Including Rock - WBTC 32/92, The Use of Tropical Hard Wood on Construction Site DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials - • ETWB TC(W) No. 34/2002
	Mitigation Measures	main concerns to address	Agent	D	С	0		Guidelines
S8.5	A recording system for the amount of wastes generated/ recycled and disposal sites. The trip- ticket system will be included as one of the contractual requirements and implemented by the contractor(s).	Land site/ During construction	Contractor(s)		•		Implemented	Trip Ticket System for Disposal of Construction & Demolition Materials
S8.5	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal.	Land site/ During construction/ During operation	Contractor(s)		~		Implemented	Tropical Hard Wood on
S8.5	Encourage collection of aluminium cans and waste paper by individual collectors during construction with separate labelled bins provided to segregate these wastes from other general refuse by the workforce.	Land site/ During construction	Contractor(s)		•		Implemented	Management of Construction and Demolition Material
S8.5	Any unused chemicals and those with remaining functional capacity will be recycled as far as possible.	Land site/ During construction	Contractor(s)		✓		N/A	-
S8.5	Use of reusable non-timber formwork to reduce the amount of C&D materials.	All areas/ During construction	Contractor(s)		•		Implemented	Tropical Hard Wood on
\$8.5	Prior to disposal of construction waste, wood, steel and other metals will be separated to the extent practical, for re-use and/or recycling to reduce the quantity of waste to be disposed of to landfill.	All areas/ During construction	Contractor(s)		•		Implemented	Trip Ticket System for Disposal of Construction &
S8.5	Proper storage and site practices to reduce the potential for damage or contamination of construction materials.	All areas/ During construction	Contractor(s)		~		Implemented, reminder issued.	-
S8.5	Plan and stock construction materials carefully to reduce amount of waste generated and avoid unnecessary generation of waste.	All areas/ During construction	Contractor(s)		~		Implemented	-
S8.5	A Sediment Quality Report (SQR) for sampling and chemical testing of the sediment will be prepared and submitted to the EPD for approval. The approved detailed sampling and chemical testing will be carried out prior to the commencement of the dredging activities to confirm the sediment disposal method.	Marine works/ During construction	Contractor(s)		•		N/A	ETWB TC(W) No. 34/2002 and Dumping at Sea Ordinance (DASO)
S8.5	The management of dredged/ excavated sediment management requirement from <i>ETWB TC(W) No.</i> 34/2002 will be incorporated in the Specification of the Contract Documents.	Marine works/ During construction	WSD/ Contractor(s)		•		Implemented	ETWB TC(W) No. 34/2002 and Dumping at Sea Ordinance (DASO)
S8.5	The contractor will open a billing account with EPD in accordance with the Waste Disposal (Charges for Disposal of Construction Waste) Regulation for the	Contract mobilisation/ During construction	Contractor(s)		~		Implemented	Cap 354N Waste Disposal (Charges for Disposal of

EIA Reference	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation	Impler Stage	nentati	on	Implementation Status	Relevant Legislation &
	Mitigation Measures	main concerns to address	Agent	D	С	0		Guidelines
	payment of disposal charges.							Construction Waste) Regulation
S8.5	A trip-ticket system will be established in accordance with DEVB TC(W) No. 6/2010 to monitor the reuse of surplus excavated materials off-site and disposal of construction waste and general refuse at transfer facilities/landfills, and to control fly-tipping.		Contractor(s)		•		Implemented	DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials
\$8.5	The project proponent will also conduct regular inspection of the waste management measures implemented on site as described in the Waste Management Plan.		Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		•		Implemented	ETWB TC(W) No. 19/2005, Environmental Management on Construction Sites
\$8.5	A recording system (similar to summary table as shown in Annex 5 and Annex 6 of Appendix G of ETWB TC(W) No. 19/2005) for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established during the construction phase.	All area/ During construction	Contractor(s)		•		Implemented	Annex 5 and Annex 6 of Appendix G of ETWB TC(W) No. 19/2005
S8.5	Inert C&D materials (public fill) will be reused within the Project as far as practicable.	All area/ During construction	Contractor(s)		~		Implemented	-
S8.5	Public fill and construction waste shall be segregated and stored in different containers or skips to facilitate reuse or recycling of materials and their proper disposal.	All area/ During construction	Contractor(s)		-		Implemented	-
S8.5	Specific areas of the work site will be designated for such segregation and storage if immediate use is not practicable.	All area/ During construction	Contractor(s)		-		Implemented	-
\$8.5	To reduce the potential dust and water quality impacts of site formation works, C&D materials will be wetted as quickly as possible to the extent practice after filling.	All area/ During construction	Contractor(s)		•		Implemented	Air Pollution Control (Construction Dust) Regulation (Cap 311R); WPCO (Cap 358)
S8.5	Open stockpiles of excavated/ fill materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Land site/ During Construction, particularly dry season	Contractor(s)		•		Implemented	Air Pollution Control (Construction Dust) Regulation (Cap 311R)
\$8.5	Chemical waste container shall be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed.		Contractor(s)/ WSD		•	✓ 	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation	Impler Stage		Implementation Status	Relevant Legislation & GuidelinesChemical WastesWaste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of Chemical WastesWaste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of Chemical WastesWaste Disposal (Chemical Waste) (General) 	
	Mitigation Measures	main concerns to address	Agent	D	C	0		
S8.5	Chemical waste container shall have a capacity of less than 450 L unless the specifications have been approved by the EPD.	All area/ During construction/ During operation	Contractor(s)/ WSD		-	~	Implemented	Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of
S8.5	A label in English and Chinese shall be displayed on the chemical container in accordance with instructions prescribed in Schedule 2 of the Regulations.	All area/ During construction/ During operation	Contractor(s)/ WSD		•	•	Implemented	Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of Chemical Wastes
S8.5	Storage areas for chemical waste shall be enclosed on at least 3 sides.	All area/ During construction/ During operation	Contractor(s)/ WSD		•	•	Implemented	Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of
S8.5	Storage areas for chemical waste shall have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest.	All area/ During construction/ During operation	Contractor(s)/ WSD		-	•	Implemented	Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of
S8.5	Storage areas for chemical waste shall have adequate ventilation.	All area/ During construction/ During operation	Contractor(s)/ WSD		1	•	Implemented	Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of Chemical Wastes
S8.5	Storage areas for chemical waste shall be covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary).	All area/ During construction/ During operation	Contractor(s)/ WSD		•	•	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Handling and Storage of Chemical Wastes
S8.5	Storage areas for chemical waste shall be arranged so that incompatible materials are appropriately separated.	All area/ During construction/ During operation	Contractor(s)/ WSD		•	•	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of

EIA Reference	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation	Implementation Stage		ion	Implementation Status	Handling and Storage of Chemical Wastes Waste Disposal (Chemica Waste) (General) Regulation; Code of Practice on the Packaging Handling and Storage of Chemical Wastes DEVB TC(W) No. 8/2010
	Mitigation Measures	main concerns to address	Agent	D	С	0		Guidennes
S8.5	General refuse will be stored in enclosed bins or compaction units separately from construction and chemical wastes.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	•	Implemented, reminder issued.	Regulation; Code of Practice on the Packaging, Handling and Storage of
S8.5	Adequate number of waste containers will be provided to avoid over-spillage of waste.	All area/ During construction/ During operation	Contractor(s)/ WSD		•	•	Implemented	Enhanced Specification for Site Cleanliness and
\$8.5	A reputable waste collector will be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts.	All area/ During construction/ During operation	Contractor(s)/ WSD		-	•	Implemented	-
S8.5	 Recycling bins will be provided at strategic locations within the Site to facilitate recovery of recyclable materials (including aluminium can, waste paper, glass bottles and plastic bottles) from the Site. Materials recovered will be sold for recycling. 	All area/ During construction/ During operation	Contractor(s)/ WSD		√	•	Implemented	-
S8.5	To avoid any odour and litter impact, accurate number of portable toilets will be provided for workers on-site.	All area/ During construction	Contractor(s)		~		Implemented	-
\$8.5	The burning of refuse on construction sites is prohibited by law.	All area/ During construction	Contractor(s)		~		Implemented	Air Pollution Control Ordinance (Cap 311)
S8.7	To facilitate monitoring and control over the contractors' performance on waste management, a waste inspection and audit programme will be implemented throughout the construction phase.	All facilities/ During construction	ET/ IEC		~		Implemented	-

	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation	Implei Stage	nentat	ion	Implementation Status	Relevant Legislation &
		main concerns to address	Agent	D	C	0		Guidelines
	Ecology							
\$9.7	For slope mitigation works within the Clear Water Bay Country Park, to avoid tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels can be adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical. A detailed specification describing the exact locations of the flexible barrier foundation plates, soil nails and rock dowels will be prepared to illustrate how the setback distance from existing trees would be implemented for tree avoidance.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)	×	¥		Implemented	-
S9.7	Pruning of tree canopies along the alignment of the flexible barriers shall be limited to a minimum.	Slope mitigation works area/ During construction	Contractor(s)		~		Implemented	
\$9.7	The alignment of flexible barriers shall be optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable. All individuals of <i>Marsdenia lachnostoma</i> within the slope mitigation areas shall be retained <i>in- situ</i> , by positioning the alignment of flexible barrier at a minimum 1.5m in a radius away from these individuals.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)	•	•		Implemented	-
S9.7 and 9.10	At the detailed design stage prior to the commencement of the slope mitigation works, a vegetation survey shall be carried out at the slope mitigation areas within the Clear Water Bay Country Park to assess the condition and identify the location of each individual of <i>Marsdenia lachnostoma</i> and other flora species of conservation interest that may be directly affected by the construction works.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)	•	✓		Implemented	-
\$9.7	Temporary fencing will be installed to fence off the concerned species either in groups of individually within the works area and in the close proximity to prevent from being damaged and disturbed during construction. A sign identifying the site shall be attached to the fence and flagging tape shall be attached to the individuals to visualize their locations.	Slope mitigation works area/ During construction	Contractor(s)		•		Implemented	-
S9.7 and S9.10	A specification for fencing and demarcating individuals of <i>Marsdenai lachnostoma</i> (or other flora species of conservation interest, if found) adjacent to the	Slope mitigation works area/ During construction	Contractor(s)		•		Implemented	-

	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Stage	mentat	1	Implementation Status	Relevant Legislation & Guidelines
	5	main concerns to address		D	C	0		
	proposed alignment of the flexible barriers will be prepared to protect the species.							
S9.7	Induction training shall also be provided to all site personnel in order to brief them on this flora of conservation interest including the locations and their importance.	Slope mitigation works area/ During construction	Contractor(s)				Implemented	-
S9.7	The resident site supervisory staff will closely monitor the conditions of concerned individuals during construction of flexible barriers in the close proximity.	Slope mitigation works area/ During construction	Contractor(s)		•		Implemented	-
S9.7	Erect fences along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas.	All area/ During construction	Contractor(s)		√		Implemented	-
S9.7	Regularly check the work site boundaries to ensure that they are not breached and that damage does not occur to surrounding areas.	All area/ During construction	Contractor(s)/ Environmental Team (ET)		√		Implemented.	-
\$9.7	Avoid any damage and disturbance, particularly those caused by filling and illegal dumping, to the surrounding habitats through proper management of waste disposal.	All area/ During construction	Contractor(s)		√		Implemented	-
S9.7	Reinstate temporarily affected areas, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site tree/shrub planting. The tree/shrub species will be chosen with reference to those in the surrounding area.	All area/ During construction	Contractor(s)		•		N/A	-
S9.7	Affected habitats within the Clear Water Bay Country Bay shall be reinstated by hydro-seeding and planting of climbers and native shrub seedlings where practical upon completion of the slope mitigation works.	All area/ During construction	Contractor(s)		✓		N/A	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended	Implementation			ation	Implementation Status	Relevant Legislation &
		measures & main concerns to address	Agent	D	C	0		Guidelines
	Landscape & Visual							
S11.10 & 11.11	The construction area and area allowed for temporary structures, such as the contractor's office, will be minimized to a practical minimum. (MM1)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	~	~	Implemented	-
S11.10 & 11.11	At the detailed design stage, the design team will seek to minimize the landscape footprint of the Project and above ground facilities, while satisfying all other requirements. (MM2)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	-	•	-	Implemented	-
S11.10 & 11.11	 Design principles will be adopted to take into account the surrounding area, particularly Clear Water Bay Country Park behind and the nearby waterfront, with due consideration given to: green roofs where practical (ie without equipment on the roof); roadside planting; aesthetic treatment of all structures; vertical greening; screen planting along application site; and landscape enhancement with amenity planting where practical including planting along the edge (site boundary) fence with native shrubs where feasible, to reduce their visual impact and blend them into the surrounding landscape. (MM3) 	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)		~	•	Implemented	-
S11.10 & 11.11	All trees within the Project Site or the potential slope mitigation works area will be carefully protected during construction according to DEVB TCW No. 10/2013 – Tree Preservation (MM4)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	•	•	Implemented	ETWB TCW No. 3/2006 - Tree Preservation.
S11.10 & 11.11	No tree within the Country Park will be felled. Trees within the Site unavoidably affected by the works will be transplanted where necessary and practical. For trees that need to be felled, compensatory planting will be provided to the satisfaction of relevant Government departments. A compensatory tree planting proposal including locations of tree compensation will be submitted to seek relevant government department's approval, in accordance with DEVB TC(W) No. 10/2013. (MM5)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	✓ 	•	Implemented	DEVB TC(W) No. 10/2013
S11.10 & 11.11	Any slope mitigation works necessary to address natural terrain hazards, will be minimized to minimize any potential environmental impact to the Country Park e.g. soil nailing and rock stabilization will aim to avoid existing trees e.g. should any restoration of vegetation be	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	~	•	N/A	

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended	Implementation	-			Implementation Status	Relevant Legislation &
		measures & main Ag concerns to address	Agent	D	С	0		Guidelines
	necessary, the best planting matrix with native species will be established, with the aim of resembling the existing vegetation. (MM6)							
\$11.10 & 11.11	Dredging works for the installation of intake structures and outfall diffusers should be minimized to avoid or reduce any potential environmental impacts to as low as reasonably practicable (ALARP). The intake and outfall structures (e.g. intake openings and diffuser heads) will be prefabricated and transferred to site for installation. (MM7)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	~	~	Implemented	
S11.10 & 11.11	All night-time lighting will be reduced to a practical minimum both in terms of number of level and will be hooded and directional. (MM8) units and lux level and will be hooded and directional. (MM8)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	•	•	Implemented	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended	Implementation				Implementation Status	Relevant Legislation &
		measures & main concerns to address	Agent	D	C	0		Guidelines
	Landfill Gas Hazard						•	
S12.7	During all works, safety procedures should be implemented to minimise the risks of fires and explosions, asphyxiation of workers and toxicity effects resulting from contact with contaminated soil and groundwater.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	~	Implemented	-
S12.7	During trenching and excavation as well as creation of confined spaces at near to or below ground level, precautions should be clearly laid down and rigidly Gas detection equipment and appropriate breathing apparatus should be available and used when entering confined spaces or trenches deeper than 1 metre.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	-	•	Implemented	
S12.7	The Contractor should make the workers are aware of potential hazards of working in confined spaces (any chamber, manhole or culvert which is large enough to permit access to personnel). Such work in confined spaces is controlled by the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance. Following the Safety Guide to Working in Confined Spaces ensures compliance with the above regulations.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	~	•	Implemented	
S12.7	Safety officers, specifically trained with regard to landfill gas and leachate related hazards and the appropriate actions to take in adverse circumstances, should be present on the site throughout the works, in particular, when works are undertaken below grade.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	✓	Implemented	
S12.7	All personnel who work on site and all visitors to the site should be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	~	•	Implemented	
S12.7	Monitoring for landfill gas should be undertaken in all excavations, manholes, chambers (particularly during pipe jacking) and any confined spaces through the use of an intrinsically safe portable instrument, appropriately calibrated and capable of measuring the concentrations of methane. carbon dioxide and oxygen.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	~	•	✓ ✓	Implemented	
S12.7	Monitoring frequency and areas to be monitored should be specified prior to commencement of groundwork, either by the Safety Officer, or by an appropriately qualified person. All measurements should be recorded and documented.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	-	Implemented	

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended	Implementation	Implementation Stage			Implementation Status	Relevant Legislation &
		measures & main concerns to address	Agent	D	C	0		Guidelines
S12.7	Proceed drilling with adequate care and precautions against the potential hazards which may be encountered.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	~	Implemented	
S12.7	Prior to the commencement of the site works, the drilling contractor should devise a 'method-of- working' statement covering all normal and emergency procedures (including but not limited to number of operatives, experience and special skills of operatives, normal method of operations, emergency procedures, supervisors responsibilities, storage and use of safety equipment, safety procedures and signs, barriers and guarding). The site supervisor and all operatives must be familiar with this statement.	All area/ During construction/ During operation	Contractor(s)	✓ 	~	✓	Implemented	
S12.7	Where below ground service entries are necessary to the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II), the entry point should be sealed to prevent gas entry. In addition, any below grade cable trenches entering the Incoming Switchgear Room and 132 kV Substation can become the pathway for landfill gas and hence grilled metal covers should be used.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	~	N/A	
S12.7	It is recommended regular landfill gas monitoring should be carried out at the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II). The monitoring frequency will be monthly for the first year of operation. If the monitoring results show no sign of landfill gas migration, reduce the monitoring frequency to once every six months.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	-	•	-	N/A	
S12.7	The manholes and utility pits within the Project Site and along the fresh water mains. Each manhole/ utility pit should be monitored with two measurements (at mid depth and base). Each measurement should be monitored for a minimum of 10 minutes. A steady reading and peak reading should be recorded at each manhole/ utility pit and for each measurement. The need for venting the manhole/ utility pit and further monitoring will be reviewed after the initial monitoring.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	~	~	Implemented	
S12.7	All construction, operation and maintenance personnel working on-site as well as visitors should be made aware of the hazards of landfill gas and its possible presence on-site. This should be achieved through a combination of posting warning signs in prominent places and also by access to detailed information on landfill gas hazards and the designs and procedural means by which these hazards are being minimized on-site.	All area/ Detailed design/ During construction/ During operation	Contractor(s)	•	•	~	Implemented	

Appendix D

Impact Monitoring Schedule of the Reporting Month

Remarks:

Monitoring Parameters: Dissolved oxygen, Temperature, pH, Turbidity, Salinity, Suspended Solids

Note:

* - Due to safety concern of vessel transportation earlier than 0700, Water Quality Monitoring would start at 0800.

\$ - Since predicted tide is shorter than 3.5 hours, method of 90% tidal period as monitoring time is adopted.

& - Due to safety concern for sampling event in night-time, method of 90% tidal period as monitoring time is approached and end at 1900.

- Prioritized routing: Mid-Ebb: CE \rightarrow WSR16 \rightarrow WSR37 \rightarrow WSR36 \rightarrow WSR33 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and WSR4 \rightarrowRemaining stations and Mid-Flood: CF \rightarrow WSR1 \rightarrow WSR2 \rightarrow WSR3 \rightarrow WSR4 \rightarrow Remaining stations and WSR4 \rightarrowRemaining stations and WSR4 \rightarrowRemaining

	Sat
	5
Impact ng for CE, CF, WSR1, WSR2, WSR3, 5, WSR33, WSR36, WSR37 <u>Tidal Period:</u> Tide: 13:00-17:00	
Tide: 05:38-13:00 <u>onitoring Time:</u> ebb: 13:15-16:45 	
od: 08:00-11:04*\$	
	12
	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period:</u> Ebb Tide: 18:00-23:59 Flood Tide: 01:55-18:00 <u>Monitoring Time:</u> Mid-ebb:18:17-19:00\$#& Mid-flood:08:12-11:42
	19
	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period:</u> Ebb Tide: 11:42-16:29 Flood Tide: 05:12-11:42 <u>Monitoring Time:</u> Mid-ebb: 12:20-15:50 Mid-flood: 08:00-10:12*
	26
	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period:</u> Ebb Tide: 17:12-23:59 Flood Tide: 00:36-17:12 <u>Monitoring Time:</u> Mid-ebb: 17:32-19:00\$&# Mid-flood: 08:00-10:39&*</td></tr><tr><td></td><td></td></tr><tr><td></td><td></td></tr><tr><td></td><td></td></tr></tbody></table>

Appendix E

Event/Action Plan for Noise Exceedance

Event	Act	ion							
	ЕТ		IEC		ER		Contractor		
Action Level	1.	Carry out investigation to identify the source and cause of the	1.	Review the analyzed results submitted by the ET	1.	Confirm receipt of Notification of Exceedance in writing	1.	Submit noise mitigation proposals if required, to the IEC and ER	
		complaint/ exceedance(s)	2.	Review the proposed remedial	2.	Require Contractor to propose	2.	Implement noise mitigation	
	2.	Notify IEC, ER, and Contractor and report the results of investigation		measures by the Contractor and advise the ER accordingly		remedial measures for the analysed noise problem		proposals.	
		to the Contractor, ER and the IEC	3.	Supervise the implementation of	3.	Ensure remedial measures are			
	3.	Discuss with the Contractor and		remedial measures		properly implemented			
		IEC for remedial measures required							
	4.	If the complaint is related to the Project, conduct additional monitoring for checking mitigation effectiveness and report the findings and results to the IEC, ER and the Contractor							

Appendix F

Noise Monitoring Equipment Calibration Certificate (BLANK)

(BLANK)

Appendix G

Event/Action Plan for Water Quality Exceedance

Event		Act	tion	
	ET	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the SO and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next working day of exceedance. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)

Event		Act	tion	
	ET	IEC	SO	Contractor
Limit level	Inform the SO and confirm	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm
being exceeded		Contractor on the mitigation	Contractor on the proposed	notification of the non-
by one	compliance in writing;	measures;	mitigation measures;	compliance in writing;
sampling day	Rectify unacceptable practice;	Review proposals on	Request Contractor to	Rectify unacceptable practice;
	Check all plant and	mitigation measures submitted	critically review the working	Check all plant and
	equipment;	by Contractor and advise the	methods;	equipment;
	Consider changes of working	SO accordingly;	Make agreement on the	Consider changes of working
	methods;	Assess the effectiveness of	mitigation measures to be	methods;
	Discuss with Contractor, IEC	the implemented mitigation	implemented.	Discuss with ET, IEC and SO
	and SO and propose	measures.	Assess the effectiveness of	and propose mitigation
	mitigation measures to IEC	(The above actions should be	the implemented measures.	measures to IEC and SO
	and SO within 3 working days;	taken within 1 working day	(The above actions should be	within 3 working days;
	Implement the agreed	after the exceedance is	taken within 1 working day	Implement the agreed
	mitigation measures.	identified)	after the exceedance is	mitigation measures.
	(The above actions should be		identified)	(The above actions should be
	taken within 1 working day			taken within 1 working day
	after the exceedance is			after the exceedance is
	identified)			identified)

Event		Act	tion	
	ET	IEC	SO	Contractor
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC, SO and Contractor. Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and SO and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures; As directed by the SOR, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after Limit Level being exceeded by two consecutive sampling days)

Appendix H

Waste Flow Table

Contract No. 13/WSD/17 Environmental Management Plan for Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

Appendix F - Monthly Summary Waste Flow Table

Name of Department: WSD

TT*T*

Contract No.: 13/WSD/17

Monthly Summary Waste Flow Table for <u>2022 (year)</u>

	Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wastes Generated Monthly										
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan	233.850	0.000	0.000	0.000	233.850	0.000	0.000	0.069	0.005	0.000	109.020
Feb	175.850	0.000	0.000	0.000	175.850	0.000	0.000	0.000	0.000	0.000	94.830
Mar											
Apr											
May											
Jun											
Sub-total	409.700	0.000	0.000	0.000	409.700	0.000	0.000	0.069	0.005	0.000	203.850
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	409.700	0.000	0.000	0.000	409.700	0.000	0.000	0.069	0.005	0.000	203.850

Notes:

(1) The performance targets are given in Section 1.69 of Specification B

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging material

* The data will be reviewed in next month.

Appendix I

Site Inspection Proforma

de.

Acuity Sustainability Consulting Limited Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: <u>5/2/2022</u> Inspection Time: <u>14:30 - 17 = 00</u>	Inspected by: Contra	ET: July lenne ctor: <u>Bnän kom Asplu</u> ry TSanf	so: <u>Allymond Cok</u> IEC: janic fanjan	WSD:
Weather	/	*		
Condition Sunny Fine	Overcast	Drizzle Rain	Storm Hazy	
Temperature	Humidity	Iigh Moderate	Low	
Wind Calm Light	Breeze	trong		

Item EIA No.	A ref.	N/A	Yes	No	Photo/Remarks
0.00 0.01	General Is the current Environmental Permit displayed conspicuously at all vehicle site entrances/exits for public's information at any time?		\square		
0.02	Is ET Leader's log-book kept readily available for inspections?		\square		
1.00 1.01 S4.8	Construction Dust .8.1 Are dusty materials, such as excavated materials, building debris and construction materials, and exposed earth surface properly covered to prevent dust emission?				Regular outer spraying was constructed.
1.02 \$4.8	8.1 Are screenings, enclosures, water spraying or vacuum cleaning devices provided dusty construction works for dust suppression?	d to	\square		Regular water Spraying Was Candillited.
1.03 \$4.8	.8.1 Are fumes or smoke emitting plants or construction activities shielded by a scre	en?			No functionale another files to construction out with observe
1.04 S4.8	8.1 Are wheel-washing facilities with high-pressure water jets provided at all site ex	kits?			
1.05 \$4.8	.8.1 Is wheel-washing provided to all vehicles leaving the site?		1		
1.06 \$4.8	.8.1 Are road section near the site exit free from dusty material?		\square		
1.07 \$4.8	8.1 Are all main haul roads inside the site paved or sprayed with water to minimize emission during vehicle movement?	dust	Ą		paved. + sprayes
1.08 S4.8	.8.1 Are water spraying provided immediately prior to any loading or transfer of dus materials?	ty	Ø		
1.09 \$4.8	8.1 Are covers provided to all dump trucks carrying dusty materials when entering a leaving the site?	and	\square		
1.10 S4.8	8.1 Are the working areas for uprooting of trees, shrubs, or vegetation or the remov- boulders, poles, pillars sprayed with water to maintain the entire surface wet?	al of			
1.11 S4.8	.8.1 Is exposed earth properly treated within six months after the last construction ac on site?	tivity	\square		
1.12 \$4.8	.8.1 Does the operation of plants on site free form dark smoke emission?				(wkmm lata

	Cont	tract no. 13/WSD/17 Design, Build and Operate First Stage of T	seung Kwa	an O De	salinat	ion Plant
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
1.13	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?				
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?				
1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?				
1.16	S4.8.1	Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?		\square		
1.17	S4.8.1	Is open burning prohibited?		\square		
2.00		Construction Noise (Airborne)				
	\$5.7	Are quiet plants adopted on site?		\square		aume (abols
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive niose?				Regular Regular Maurtenanu
2.03	S5.7	Are plants throttled down or turned off when not in use?		\square		
2.04	S5.7	Are the plants known to emit noise strongly in one direction oriented to face away				0
		from NSRs?				4 No nearly
	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?	\square			
	S5.7	Are silencers, mufflers and enclosures provided to plants?	\square	Ņ		
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?				
2.08	\$5.7	Are purposely-built site hoarding construction with appropriate materials provided				
2.09	057	along the site boundary?				
2.09	S5.7	Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?		\square		
2.10	\$5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?				
	S5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?	\square			
Ng P	S5.7	Are all construction noise permit(s) applied for percussive piling work?				
2.13	\$5.7	Are construction noise permit(s) applied for general construction works during restricted hours?		\square		
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?				
3.00		Water Quality				
	S6.9	Is effluent discharge license obtained for wastewater discharge from site?		\square		
3.02	S6.9	Is effluent discharged according to the effluent discharge license?				
3.03	S6.9	Is wastewater discharge from site properly treated prior to discharge?				

Acuity Sustainability Consulting Limited Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

	Cont	ract no. 13/WSD/17 Design, Build and Operate First Stage of Ts	eung Kwa	n O Des	alinati	ion Plant
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?				
3.05	S6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?				
3.06	S6.9	Is surface runoff diverted to sedimentation facilities?		\square		
3.07	S6.9	Is the drainage system properly maintained?				
3.08	S6.9	Are construction works carefully programmed to minimize soil excavation works during rainy seasons?				
3.09	\$6.9	Are exposed soil surface protected by paving as soon as possible to reduce the potential of soil erosion?				
3.10	S6.9	Are temporary access roads protected by crushed gravel?				
3.11	S6.9	Are exposed slope surface properly protected?				/manual seeding
3.12	S6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary, backfilled in short sections after excavation?		\square		
3.13	S6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar fabric during construction?		Ź		
3.14	S6.9	Is runoff from wheel-washing facilities avoided?				
3.15	S6.9	Is oil leakage or spillage prevented?				10nmoler ()
3.16	S6.9	Are there any measures to prevent the release of oil and grease into the storm drainage system?				Nonninoler ()
3.17	S6.9	Are the oil interceptors/ grease traps properly maintained?				
3.18	S6.9	Are debris and rubbish generated on site collected, handled and disposed of properly to avoid them entering the streams?				penindler (1)
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank?		\square		
3.20	S6.9	Are tanks, containers, storage area bunded and the locations locked as far as possible from the sensitive watercourse and stormwater drains?				
3.21	S6.9	Are sufficient chemical toilets provided on site to handle sewage from construction work force?		\square		
3.22	S6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets provided by the licensed contractors?				
3.23	S6.9	Is concrete washing water properly collected and treated prior to discharge?		\square		
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of suspended solids to nearby sensitive receivers?				No Visiteto Manne areas m reporting dang
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?				

\$12

EIA ref.					Th1 / 100 - 4
		N/A	Yes	No	Photo/Remarks
S6.9	Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake?				17
	Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab?				И
	properly closed before lifting the grab?				1,
S6.9	Is the maximum allowed dredging rate at the seawater intake limited to $750 \text{ m}^3/\text{day}$ while the maximum allowed dredging rate at the submarine outfall is $3,500 \text{ m}^3/\text{day}$?				~
S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)?				Nomarine winping absonce
	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport?				٤1
S6.9	Are barges filled to a level which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action?				s.)
S6.9	Are excess materials cleaned from decks and exposed fittings before the vessel is moved from the dredging area after dredging?				
	litter or other objectionable matter to be present in the water within and adjacent	Hand			
	accumulated on the deck or other exposed parts of the vessel removed and placed in				٤/
	of the tide and reduce operations speed to ensure that excessive turbidity is not		Ø		
	moored and marked to avoid danger to marine traffic? Is regular inspection on the integrity of the silt curtain carried out by the contractor and any damage to the silt				
S6.9	Are all vessels have a clean ballast system?				
			\square		
		Ø			
\$6.9 I	s any soil waste disposed overboard?				
	\$6.9 \$6.9 \$6.9 \$6.9 \$6.9 \$6.9	 Solver a performation and the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m³ closed grab, 10-11 grab per hour for 6m³ closed grab? Solver a performation of the second s	S6.9 Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab? S6.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m ³ /day while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? S6.9 Is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)? S6.9 Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport? S6.9 Are barges filled to a level which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action? S6.9 Are targe ontimed that the works cause no visible foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the dredging site? S6.9 When the dredged material has been unloaded at the disposal areas, is any material accumulated on the deck or other exposed parts of the vessel removed and placed in the hold or a hopper? S6.9 When the dredged material has been unloaded at the disposal areas, is any material accumulated on the deck or othe	S6.9 is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ² closed grab, 10-11 grab per hour for 6m ² closed grab? S6.9 is the grab operated in slow and controlled mamer such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? S6.9 is the maximum allowed dredging rate at the seawater intake limited to 750 m ³ /day while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? S6.9 is the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? S6.9 is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)? S6.9 Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action? S6.9 Are excess materials cleaned from decks and exposed fittings before the vessel is moved from the dredging area after dredging? S6.9 Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, latter or other objectionable matter to be present in the water within and adjacent to the dredging site? S6.9 When the dredged material has been unloaded at the disposal areas, is any material accumulated on the deck or other exposed parts of the vessel removed and placed in the hold o	86.9 Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab? 86.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be property closed before lifting the grab? 86.9 Is the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? 86.9 Is the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? 86.9 Is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)? 86.9 Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport? 86.9 Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport? 86.9 Are barges filled to a level which ensures that material does not spill over during transport to the disposal sile and that adequate freeboard is maintained to ensure that the decks are not washed by wave accion? 86.9 Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, if the deck or other exposed parts of the vessel is moved from the dredging site? 86.9 Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, if the hold or a hopper? 86.9

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.		N.				
4.00		Waste Management				
4.01	S8.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid wastes at public filling facilities and landfills?				
4.02	S8.5	Is a recording system implemented to record the amount of wastes generated, recycled and disposed of?		Z		
4.03	S8.5	IS the Contractor registered as a chemical waste producer?		Ø		
4.04	S8.5	Are chemical waste separated from other waste and collected by a licensed chemical waste collector?				
4.05	S8.5	Are trip tickets for chemical waste disposal available for inspection?				
4.06	S8.5	Is chemical waste reused and recycled on site as far as practicable?				
4.07	S8.5	Are all containers for chemical waste properly labelled?		Ø		
4.08	S8.5	Is chemical waste storage area used solely for storage of chemical waste and properly labelled?		\square		
4.09	S8.5	Are incompatible chemical wastes stored in different areas?				
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?				
4.11	S8.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?				
4.12	S8.5	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		\square		
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?		\square		
4.14	S8.5	Is general refuse disposed of properly and regularly?				remindering
4.15	S8.5	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?				renninderCLJ
4.16	S8.5	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?				
4.17	S8.5	Are C&D wastes sorted on site?		\square		
4.18	S8.5	Are C&D waste disposed of properly?				
4.19	S8.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity of waste?				
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site?				

	Contr	act no. 13/WSD/17 Design, Build and Operate First Stage of Ts	seung Kwa	an O De	salinati	on Plant
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.21	S8.5	Are the construction materials stored properly to minimize the potential for damage or contamination?				reminderty
4.22	S8.5	Is a dumping license obtained to deliver public fill to public filling areas?		Z		
5.00		Landscape and Visual				
	S11.10	Are Is site hoarding provided?				
0.01	& 11.11	, it is she houlding provided.	\square			
5.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		\square		
5.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?				
5.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?		\square		manual seeding
5.05	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		\square		
5.06	S11.10 &	Is excavation works carried out manually instead of machinery operation within 2.5m				
		vicinity of any preserved trees?		•		
5.07	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?	\square			
5.08	S11.10 & 11.11	Are surgery works carried out for damaged trees?				
6.00		Ecology				
6.01	S9.7	Is site runoff properly treated to prevent any silly runoff?				
6.02	S9.7	Are silt trap installed and well-maintained?		\square		
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?				
6.04	S9.7	Are construction works restricted to works area which are clearly defined?				
6.05		For slope mitigation works within the Clear Water Bay Country Park, are tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical?				
6.06		Are pruning of tree canopies along the alignment of the flexible barriers limited to a minimum?				
5.07		Are the alignment of flexible barriers optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable? Are the alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these individuals?				
6.08		At the detailed design stage prior to the commencement of the slope mitigation works, is vegetation survey carried out at the slope mitigation areas within the Clear Water Bay				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
NO.		Country Park to assess the condition and identify the location of each individual of				
		Marsdenia lachnostoma and other flora species of conservation interest that may be directly				
		affected by the construction works?				
6.09	S9.7	Is temporary fencing installed to fence off the concerned species either in groups of				
		individually within the works area and in the close proximity to prevent from being				
		damaged and disturbed during construction? Is a sign identifying the site attached to the				
		fence and flagging tape shall be attached to the individuals to visualize their locations?				
6.10	\$9.7	Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or		\square		
	_	other flora species of conservation interest, if found) adjacent to the proposed alignment of				
		the flexible barriers prepared to protect the species?		,		
6.11	S9.7	Is any induction training provided to all site personnel in order to brief them on this flora of		∇		
		conservation interest including the locations and their importance?		Ł		
6.12	S9.7	Is the resident site supervisory staff closely monitor the conditions of concerned		\square		
		individuals during construction of flexible barriers in the close proximity?				
6.13	S9.7	Are fences erected along the boundary of the works area before the commencement of		\Box		
		works to prevent vehicle movements and encroachment of personnel onto adjacent areas?		Ϋ́		
6.14	S9.7	Is regular check of the work site boundaries performed to ensure that they are not breached				
		and that damage does not occur to surrounding areas?				
6.15	S9.7	Is any damage and disturbance avoided, particularly those caused by filling and illegal				
		dumping, to the surrounding habitats through proper management of waste disposal?		Ý		
6.16	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and	\square			
		shrubland-grassland immediately after completion of construction works, through on-site				
		tree/shrub planting?				
6.15	\$9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro-seeding	\checkmark			
		and planting of climbers and native shrub seedlings where practical upon completion of the				
		slope mitigation works?				
7.00		Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions,				
		asphyxiation of works and toxicity effects during all works?		,		
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and				
		excavation as well as creation of confined spaces?		\square		
				4		
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in				
		confined spaces provided from the Contractor to the workers?		\square		
				ι <i>ζ</i>		
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards		,		
		and presented on the site throughout the works undertaken below grade?		\square		
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of				
1.00	512.7	ignition of gas, the possible presence of contaminated water and the need to avoid		\square		
		physical contact?				

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		\square		-
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?		\square		
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential hazards?				
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?				
7.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?	\square			
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?				
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		\square		
8.00		Overall		1		
8.01		Is the EM&A properly implemented in general?				

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Reminders 1.) General house keeping - remove lood peckaging and empty containens near the combined shelt 2.) Norking chemical containers shell be placed on a dip tragto prevent any accidental lackage. Signatures: ET Contractor's Supervising Officer's IEC's WSD's Representative Representative Representative Representative Representative NUA (Name: (Name: ung (Name: Brian Kan (Mame: (Name: NIA) 11-11/16 KWAM led

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: 17			Inspected by:	et: Ja	ity Lewing	SO:		WSD: _	NMA
Inspection Time:	12=15 11:30	>		Contractor:	J 0	IEC:			
Weather									
Condition	Sunny	Fine	Overcast	Drizzle	Rain	Storm	Hazy		
Temperature	(b) c		Humidity	High	Moderate	Low			
Wind	Calm	Light	Вгееzе	Strong					

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
0.00 0.01		General Is the current Environmental Permit displayed conspicuously at all vehicle site entrances/exits for public's information at any time?				
0.02		Is ET Leader's log-book kept readily available for inspections?		\square		
1.00	1	Construction Dust				
1.01	S4.8.1	Are dusty materials, such as excavated materials, building debris and construction materials, and exposed earth surface properly covered to prevent dust emission?		\square		1
1.02	\$4.8.1	Are screenings, enclosures, water spraying or vacuum cleaning devices provided to dusty construction works for dust suppression?	Just			Putty metariall Were left verto Junit duct emissio
1.03	\$4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?				No fume/smoke emiting plants construction autivity observed
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\square		
1.05	S4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\square		
1.06	S4.8.1	Are road section near the site exit free from dusty material?				
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize dust emission during vehicle movement?				paved
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty materials?				wentept wet to Whit and privision
1.09	S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and leaving the site?				pro unit findes
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal of boulders, poles, pillars sprayed with water to maintain the entire surface wet?	\square			
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction activity on site?		Z		
1.12	S4.8.1	Does the operation of plants on site free form dark smoke emission?				(NRMMIAL)

17/02

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

	EIA ref.		N/A	Yes	No	Photo/Remarks
ltem No.			19/74	103	140	Thoto/Remarks
1.13	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?	\square			
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?	Ý			
1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?	\square			
1.16	S4.8.1	Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?				
1.17	S4.8.1	Is open burning prohibited?				
2.00	1	Construction Noise (Airborne)				
	S5.7	Are quiet plants adopted on site?		\square		[NAISE LOW
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive niose?				(Kegnler Inspection
2.03	S5.7	Are plants throttled down or turned off when not in use?				
2.04	S5.7	Are the plants known to emit noise strongly in one direction oriented to face away from NSRs?	\square			4 Mone Arby NEK.
2.05	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?	\square)
2.06	S5.7	Are silencers, mufflers and enclosures provided to plants?	Ø			
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?	_			
2.08	S5.7	Are purposely-built site hoarding construction with appropriate materials provided along the site boundary?				
2.09	S5.7	Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?		\square		
2.10	S5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?	\square			
2.11	S5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?				
2.12	S5.7	Are all construction noise permit(s) applied for percussive piling work?				
2.13	S5.7	Are construction noise permit(s) applied for general construction works during restricted hours?				
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?		\square		
3.00		Water Quality				
3.01	\$6.9	Is effluent discharge license obtained for wastewater discharge from site?				
3.02	S6.9	Is effluent discharged according to the effluent discharge license?		\square		
3.03	S6.9	Is wastewater discharge from site properly treated prior to discharge?				

	COIIC	ract no. 15/ W5D/17 Design, build and operate inst stage of is	cong mo			
ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?		\square		
3.05	S6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?		\square		
3.06	S6.9	Is surface runoff diverted to sedimentation facilities?		\square		
3.07	S6.9	Is the drainage system properly maintained?				
3.08	S6.9	Are construction works carefully programmed to minimize soil excavation works during rainy seasons?		Ø		
3.09	S6.9	Are exposed soil surface protected by paving as soon as possible to reduce the potential of soil erosion?		\square		
3.10	S6.9	Are temporary access roads protected by crushed gravel?				
3.11	S6.9	Are exposed slope surface properly protected?				(manual soding
3.12	S6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary, backfilled in short sections after excavation?				
3.13	S6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar fabric during construction?				
3.14	S6.9	Is runoff from wheel-washing facilities avoided?		Z		
3.15	\$6.9	Is oil leakage or spillage prevented?				(oninder (3)
3.16	\$6.9	Are there any measures to prevent the release of oil and grease into the storm drainage system?				(on index (3) reminder (3)
3.17	S6.9	Are the oil interceptors/ grease traps properly maintained?	\square			
3.18	\$6.9	Are debris and rubbish generated on site collected, handled and disposed of properly to avoid them entering the streams?				reminder(1)
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank?		\square		
3.20	\$6.9	Are tanks, containers, storage area bunded and the locations locked as far as possible from the sensitive watercourse and stormwater drains?				rominder (3)
3.21	S6.9	Are sufficient chemical toilets provided on site to handle sewage from construction work force?		\mathbb{Z}		
3.22	\$6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets provided by the licensed contractors?		\square		
3.23	\$6.9	Is concrete washing water properly collected and treated prior to discharge?				
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of suspended solids to nearby sensitive receivers?		_		No manue dreifing sosciled No visit for man
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?	\square			aneas on the reporting day

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
3.26	S6.9	Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake?	Ø			7
3.27	\$6.9	Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab?	Ą			V
3.28	S6.9	Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab?	\square			U
3.29	S6.9	Is the maximum allowed dredging rate at the seawater intake limited to 750 m ³ /day while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day?	Z			٢
3.30	S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)?				4
3.31	S6.9	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport?	\square			L
3.32	S6.9	Are barges filled to a level which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action?				Ч
3.33	\$6.9	Are excess materials cleaned from decks and exposed fittings before the vessel is moved from the dredging area after dredging?	\square			./
3.34	S6.9	Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the dredging site?				
3.35	\$6.9	When the dredged material has been unloaded at the disposal areas, is any material accumulated on the deck or other exposed parts of the vessel removed and placed in the hold or a hopper?				4
3.36	\$6.9	Is dredger maintained adequate clearance between vessels and the seabed at all states of the tide and reduce operations speed to ensure that excessive turbidity is not generated by turbulence from vessel movement or propeller wash?		Ņ		
3.37	S6.9	Is the contractor shall regularly inspect the silt curtains and check that they are moored and marked to avoid danger to marine traffic? Is regular inspection on the integrity of the silt curtain carried out by the contractor and any damage to the silt curtain shall be repaired by the contractor promptly?				
3.38	S6.9	Are all vessels have a clean ballast system?				
3.39	S6.9	Are all vessels well maintained and inspected before use to limit any potential discharges to the marine environment?		Ź		
3.40	S6.9	Is any discharge of sewage/grey wastewater? Is wastewater from potentially contaminated area on working vessels should be minimized and collected?	\square			
3.41	S6.9	ls any soil waste disposed overboard?				

17/02

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

	Contra		-	and the second second second		D1 /D 1
ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.00		Waste Management				
4.01	S8.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid wastes at				
		public filling facilities and landfills?		$ \Lambda $		
				-		
4.02	\$8.5	Is a recording system implemented to record the amount of wastes generated, recycled and				
		disposed of?				
4.03	00 5	IS the Contractor registered as a chemical waste producer?				
4.03	50.5			\square		
4.04	S8.5	Are chemical waste separated from other waste and collected by a licensed chemical waste				penneder(2)
		collector?				pension)
4.05	\$8.5	Are trip tickets for chemical waste disposal available for inspection?				
4.00	56.5		Ļ	\square		
4.06	S8.5	Is chemical waste reused and recycled on site as far as practicable?		\square		
			V	yn	1	
4.07	S8.5	Are all containers for chemical waste properly labelled?				1
						remindering
4.00	0.0.5	Is chemical waste storage area used solely for storage of chemical waste and properly				
4.08	58.5					
		labelled?				
4.09	S8.5	Are incompatible chemical wastes stored in different areas?				
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?				
				1		
4.11	0.0.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of				
4.11	58.5			$ \Lambda$		
		the largest container or of 20% by volume of the chemical waste stored in that area,				
		whichever is the greatest, provide?				
4.12	S8.5	Are a routine cleaning and maintenance programme implemented for drainage systems,				
		sump pits, and oil interceptors?				
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?				
				4		
4.14	\$8.5	Is general refuse disposed of properly and regularly?				
						remindered
4.45	0.0.5	Are appropriate measures adopted to minimize windblown litter and dust during				
4.15	58.5					
		transportation of waste?				
4.16	S8.5	Are individual collectors for aluminum cans, plastic bottles and packaging material and		\square		
1		office paper provided to encourage waste segregation?				
4.17	S8.5	Are C&D wastes sorted on site?				
1 18	S8.5	Are C&D waste disposed of properly?				
4.10	30.5	The Carb make disposed of property ?				
4.19	S8.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity of				
		waste?				
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site?		\square		
				/		

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

-	TELA C			17	NI	DI (D I
Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.				_		
4.21	S8.5	Are the construction materials stored properly to minimize the potential for damage or				
		contamination?				perminder (3)
4.22	\$8.5	Is a dumping license obtained to deliver public fill to public filling areas?				
7.22	50.5	is a dumping needse obtained to deriver public in to public ming areas.		X		
5.00		Landscape and Visual		10		
5.01	S11.10	Are Is site hoarding provided?		A		
	& 11.11			Trad		
5.00			4	ų <u>k</u>		
5.02		Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		\square		
	11.11			\square		
5.03	S11.10 &	Is construction light oriented away from the sensitive receivers?	\square			
	11.11					
5.04	S11.10	Is grass hydroseeding provided to slopes as soon as the completion of works?				
	& 11.11		2			manual seeding
5.05						
5.05		Are damages to trees outside site boundary due construction works avoided?				
	11.11					
5.06	S11.10 &	Is excavation works carried out manually instead of machinery operation within 2.5m				
	11.11	vicinity of any preserved trees?	\square			
5.07	S11.10 &	Are the retained and transplanted tree(s) properly protected and in good conditions?				
	11.11					
5.00		Annual and the second second	7			
5.08		Are surgery works carried out for damaged trees?				
	11.11					
6.00		Ecology				
6.01	S9.7	Is site runoff properly treated to prevent any silly runoff?				
				$ \Lambda $		
6.02	\$9.7	Are silt trap installed and well-maintained?				
0.02	39.1	Are sin trap instance and wen-maintainee.		/		
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?				
6.04	S9.7	Are construction works restricted to works area which are clearly defined?				
6.05	S9.7	For slope mitigation works within the Clear Water Bay Country Park, are tree felling and				
0.05	39.1	damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and				
		rock dowels adjusted during detailed design, and a setback distance from existing trees is				
		recommended to be maintained as far as practical?				
6.06	S9.7	Are pruning of tree canopies along the alignment of the flexible barriers limited to a		\square		
		minimum?		\square		
6.07	S9.7	Are the alignment of flexible barriers optimized to preserve all species of conservation				
		interest and minimize the impact to the existing vegetation as far as practicable? Are the				
		alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these				
		individuals?				
6.08	50.7	At the detailed design stage prior to the commencement of the slope mitigation works, is				
0.00	37./					
		vegetation survey carried out at the slope mitigation areas within the Clear Water Bay				

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

ltem	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
		Country Park to assess the condition and identify the location of each individual of				
		Marsdenia lachnostoma and other flora species of conservation interest that may be directly				
		affected by the construction works?				
6.09	\$9.7	Is temporary fencing installed to fence off the concerned species either in groups of				
		individually within the works area and in the close proximity to prevent from being				
		damaged and disturbed during construction? Is a sign identifying the site attached to the		2		
		fence and flagging tape shall be attached to the individuals to visualize their locations?				
6.10	S9.7	Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or				
		other flora species of conservation interest, if found) adjacent to the proposed alignment of				
		the flexible barriers prepared to protect the species?		V		
6.11	S9.7	Is any induction training provided to all site personnel in order to brief them on this flora of				
		conservation interest including the locations and their importance?		Ľ		
6.12	S9.7	Is the resident site supervisory staff closely monitor the conditions of concerned				
		individuals during construction of flexible barriers in the close proximity?		\square		
6.13	\$9.7	Are fences erected along the boundary of the works area before the commencement of		F		
	57.7	works to prevent vehicle movements and encroachment of personnel onto adjacent areas?				
6.14	\$9.7	Is regular check of the work site boundaries performed to ensure that they are not breached				
	57.7	and that damage does not occur to surrounding areas?				
6.15	\$9.7	Is any damage and disturbance avoided, particularly those caused by filling and illegal				
0110	57.7	dumping, to the surrounding habitats through proper management of waste disposal?				
6.16	<u>\$9.7</u>	Are temporarily affected areas reinstated, particularly the habitats of plantation and				
		shrubland-grassland immediately after completion of construction works, through on-site				
		tree/shrub planting?				
6.15	\$9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro-seeding				
		and planting of climbers and native shrub seedlings where practical upon completion of the				
		slope mitigation works?				
7.00		Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions,				
		asphyxiation of works and toxicity effects during all works?		\square		
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and				
		excavation as well as creation of confined spaces?				
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in				
1.05	512.7	confined spaces provided from the Contractor to the workers?				
		confined spaces provided from the contractor to the workers.				
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards				
7.04	512.7					
		and presented on the site throughout the works undertaken below grade?		1		
	010 -					
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of				
		ignition of gas, the possible presence of contaminated water and the need to avoid		\square		
		physical contact?				

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

ltem	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?		\square		
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?				
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential hazards?		Z		
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?		\square		
7.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?				
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?				
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?		\square		
8.00		Overall				
8.01		Is the EM&A properly implemented in general?		\square		

17/02

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

	· · · · · · · · · · · · · · · · · · ·	1.	() () ()					
Remark / Follow up of Obser	rvation(s) and Non-c	ompliance	e(s) of Last V	Weekly Site I	inspection:			
Observation(1)								
NíL								
Reminder(s)			(10-1)	e densis	1 NP CGD IN	S NAMP S	stored.	
Kennindients) (1) General Humpe	keeping was ren	ningeor.	(Regali	ar chairm	J 01 C - 0.	indice	r -	
(2) chemical COV	rtainers should	be rem	ioved. fro	~ R.O. B	miding			
	have to as	rominde	d that	all cher	nicols should	d be	stored	
in driptrau	s and with l	abels a	doled. (steel Ban	Aver & R.	0. Bu	ilding)	
the deal to a	a unu mare	1-						
								-
Signatures:								
ET Representative	Contractor's Representative		upervising epresentati		IEC's Representative		WSD's Representative	
			rroomaa		representative		N/A	
(Name: LEGIST TACKY	(Name:) (1	Name:)	(Name:)	(Name: NIA)

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date:	23 Feb 2022	Inspected by:	ET: <u>Jacky Leury</u> Contractor:	SO: IEC:		WSD:
Weather						
Condition	Sunny / Fine	Overcast	Drizzle Rain	Storm	Hazy	
Temperature	/ ()C	Humidity	High	Low		
Wind	Calm	J Breeze	Strong			

ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
0.00		General				
0.01		Is the current Environmental Permit displayed conspicuously at all vehicle site entrances/exits for public's information at any time?		\checkmark		
0.02		Is ET Leader's log-book kept readily available for inspections?		\checkmark		
1.00		Construction Dust				
1.01	S4.8.1	Are dusty materials, such as excavated materials, building debris and construction materials, and exposed earth surface properly covered to prevent dust emission?		\square		
1.02	S4.8.1	Are screenings, enclosures, water spraying or vacuum cleaning devices provided to dusty construction works for dust suppression?				Dusty materials were lizert wet to limit dust emission
1.03	S4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?	\checkmark			
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\mathbf{V}		
1.05	S4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\checkmark		
1.06	S4.8.1	Are road section near the site exit free from dusty material?				
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize dust emission during vehicle movement?		Ø		Paved
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty materials?				
1.09	S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and leaving the site?				
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal of boulders, poles, pillars sprayed with water to maintain the entire surface wet?	\square			
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction activity on site?		\checkmark		
1.12	S4.8.1	Does the operation of plants on site free form dark smoke emission?				MRMM Lobe 1

	CONU					
ltem No.	ElA ref.		N/A	Yes	No	Photo/Remarks
	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?	\checkmark			
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?				
1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?	\checkmark			
1.16	S4.8.1	Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?		\checkmark		
1.17	S4.8.1	Is open burning prohibited?		\checkmark		
2.00		Construction Noise (Airborne)				
2.01	S5.7	Are quiet plants adopted on site?		\checkmark		Noise Label
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive niose?		\checkmark		<u>Regular inspection</u>
2.03	S5.7	Are plants throttled down or turned off when not in use?		\checkmark		
2.04	S5.7	Are the plants known to emit noise strongly in one direction oriented to face away from NSRs?	\mathbf{x}			
2.05	\$5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?				
2.06	S5.7	Are silencers, mufflers and enclosures provided to plants?				
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?		ł		
2.08	S5.7	Are purposely-built site hoarding construction with appropriate materials provided along the site boundary?		\checkmark		
2.09	S5.7	Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?		\square		
2.10	S5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?	\square			
2.11	S5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?				
2.12	S5.7	Are all construction noise permit(s) applied for percussive piling work?				
2.13	S5.7	Are construction noise permit(s) applied for general construction works during restricted hours?				
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?		\checkmark		
3.00		Water Quality				
3.01	S6.9	Is effluent discharge license obtained for wastewater discharge from site?		\checkmark		
3.02	S6.9	Is effluent discharged according to the effluent discharge license?		\checkmark		
3.03	S6.9	Is wastewater discharge from site properly treated prior to discharge?		\checkmark		

_	Conti		0			
ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?				
3.05	\$6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to				
		remove sand/silt particles from runoff?		•		
3.06	S6.9	Is surface runoff diverted to sedimentation facilities?				
3.07	S6.9	ls the drainage system properly maintained?		\checkmark		
3.08	S6.9	Are construction works carefully programmed to minimize soil excavation works				
		during rainy seasons?				
3.09	\$6.9	Are exposed soil surface protected by paving as soon as possible to reduce the				
		potential of soil erosion?		\checkmark		
3.10	S6.9	Are temporary access roads protected by crushed gravel?		\square		
3.11	S6.9	Are exposed slope surface properly protected?				
3.12	S6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary,				
		backfilled in short sections after excavation?		\checkmark		
3.13	S6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar				
		fabric during construction?		\checkmark		
3.14	S6.9	Is runoff from wheel-washing facilities avoided?				
3.15	S6.9	Is oil leakage or spillage prevented?		\checkmark		
3.16	S6.9	Are there any measures to prevent the release of oil and grease into the storm				
		drainage system?		\checkmark		
3.17	S6.9	Are the oil interceptors/ grease traps properly maintained?				
3.18	S6.9	Are debris and rubbish generated on site collected, handled and disposed of properly to avoid them entering the streams?		\checkmark		Remoder 12
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank?		\checkmark		
3.20	S6.9	Are tanks, containers, storage area bunded and the locations locked as far as possible		\checkmark		
0.01	5(6	from the sensitive watercourse and stormwater drains?				
3.21	50.9	Are sufficient chemical toilets provided on site to handle sewage from construction work force?		\checkmark	\Box	
3.22	S6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets provided				
		by the licensed contractors?		\checkmark		
3.23	S6.9	Is concrete washing water properly collected and treated prior to discharge?		\checkmark		
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of suspended solids to nearby sensitive receivers?	\square			
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?	- FÁ			
			\checkmark			

0

Acuity Sustainability Consulting Limited Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T 2333-6823 | F 2333-1316 | E genera@acuityhk.com | www.acuityhk.com

No. 3.26 S6.9 Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake? Image: Constraint of the seawater intake? 3.27 S6.9 Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab? Image: Constraint of the seawater intake impact to seabed by the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? 3.28 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m ³ /day while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day? Image: Constraint of the seawater dimension of the seawater intake limited to rate of the seawater intake limited to 750 m ³ /day?	
 3.27 S6.9 Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m¹ closed grab, 10-11 grab per hour for 6m³ closed grab? 3.28 S6.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? 3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m³/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m³/day? 	,
 dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m³ closed grab, 10-11 grab per hour for 6m³ closed grab? 3.28 S6.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? 3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m³/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m³/day? 	
grab, 10-11 grab per hour for 6m ³ closed grab? 3.28 S6.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? 3.29 S6.9 Is the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day?	
 3.28 S6.9 Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab? 3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m³/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m³/day? 	
3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m³/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m³/day?	
3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m³/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m³/day?	
3.29 S6.9 Is the maximum allowed dredging rate at the seawater intake limited to 750 m ³ /day while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day?	
while the maximum allowed dredging rate at the submarine outfall is 3,500 m ³ /day?	
3.30 S6.9 Is dredged marine sediment disposed of in a gazetted marine disposal area in	
accordance with marine dumping permit conditions of the Dumping at Sea Ordinance	
(DASO)?	
3.31 S6.9 Are disposal vessels fitted with tight bottom seals in order to prevent leakage of	
material during transport?	
3.32 S6.9 Are barges filled to a level which ensures that material does not spill over during	
transport to the disposal site and that adequate freeboard is maintained to ensure that	
the decks are not washed by wave action?	
3.33 S6.9 Are excess materials cleaned from decks and exposed fittings before the vessel is	
moved from the dredging area after dredging?	
3.34 S6.9 Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent	
to the dredging site? 3.35 S6.9 When the dredged material has been unloaded at the disposal areas, is any material	
accumulated on the deck or other exposed parts of the vessel removed and placed in	
the hold or a hopper?	
3.36 S6.9 Is dredger maintained adequate clearance between vessels and the seabed at all states	
of the tide and reduce operations speed to ensure that excessive turbidity is not	
generated by turbulence from vessel movement or propeller wash?	
3.37 S6.9 Is the contractor shall regularly inspect the silt curtains and check that they are	
moored and marked to avoid danger to marine traffic? Is regular inspection on the	
integrity of the silt curtain carried out by the contractor and any damage to the silt	
curtain shall be repaired by the contractor promptly?	
3.38 S6.9 Are all vessels have a clean ballast system?	
3.39 S6.9 Are all vessels well maintained and inspected before use to limit any potential	
discharges to the marine environment?	
3.40 S6.9 Is any discharge of sewage/grey wastewater? Is wastewater from potentially	
contaminated area on working vessels should be minimized and collected?	
3.41 S6.9 Is any soil waste disposed overboard?	

ltem	EIA ref.			In O DE.	samatic	
No.			N/A	Yes	No	Photo/Remarks
4.00		Waste Management				
4.01	58.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid wastes at				
	50.5					
		public filling facilities and landfills?				
4.02	585	ls a reporting system involution to the second state				
4.02	30.5	Is a recording system implemented to record the amount of wastes generated, recycled and				
		disposed of?		\checkmark		
4.03	\$8.5	IS the Contractor registered as a chemical waste producer?				
4.04	\$8.5	Are chemical waste separated from other waste and collected by a licensed chemical waste				
		collector?		\square		
				ليكينا		
4.05	\$8.5	Are trip tickets for chemical waste disposal available for inspection?				
4.06	\$8.5	Is chemical waste reused and recycled on site as far as practicable?				
4.07	C0 F					
4.07	58.5	Are all containers for chemical waste properly labelled?				
				\mathbf{V}		
4.08	S8.5	Is chemical waste storage area used solely for storage of chemical waste and properly				
		labelled?				
4 00	C0 5					
4.09	58.5	Are incompatible chemical wastes stored in different areas?				
			\checkmark			
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?				
				\checkmark		
4.11	S8.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of				
		the largest container or of 20% by volume of the chemical waste stored in that area,				
				4/		
		whichever is the greatest, provide?				
4.12	S8.5	Are a routine cleaning and maintenance programme implemented for drainage systems,				
		sump pits, and oil interceptors?		\backslash		
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?				
				\bigvee		
4.14	C 9 6	Is general refuse disposed of properly and regularly?				
4.14	58.5	is general reluse disposed of property and regularity:				Reminder ()
				\lor		(Pm Worl)
4.15	S8.5	Are appropriate measures adopted to minimize windblown litter and dust during				
		transportation of waste?		\checkmark		
4.16	58.5	Are individual collectors for aluminum cans, plastic bottles and packaging material and				
		office paper provided to encourage waste segregation?				
4.17	S8.5	Are C&D wastes sorted on site?				
				\lor		
4.18	S8.5	Are C&D waste disposed of properly?				
				\checkmark		
L						
4.19	58.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity of				
		waste?	\lor			
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site?				
				\mathbf{N}		
1						

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

tem I	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
4.21	\$8.5	Are the construction materials stored properly to minimize the potential for damage or			\square	
		contamination?				
4.22	S8.5	Is a dumping license obtained to deliver public fill to public filling areas?			\square	
				\checkmark		
5.00		Landscape and Visual				
		Are Is site hoarding provided?				
	& 11.11					
5.02		Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?				
0.02	11.11			\mathbf{A}		
5.03		Is construction light oriented away from the sensitive receivers?	 1			
	11.11		\checkmark			
5.04	\$11.10	Is grass hydroseeding provided to slopes as soon as the completion of works?				
	& 11.11			\checkmark		
5.05		Are damages to trees outside site boundary due construction works avoided?				
	11.11			\checkmark		
5.06		els excavation works carried out manually instead of machinery operation within 2.5m				
	11.11	vicinity of any preserved trees?	\checkmark			
5.07		Are the retained and transplanted tree(s) properly protected and in good conditions?				
	11.11		\checkmark			
5.08		Are surgery works carried out for damaged trees?			\Box	
	11.11					
6.00	+	Ecology				
	S9.7	Is site runoff properly treated to prevent any silly runoff?				
6.02	S9.7	Are silt trap installed and well-maintained?		. /	\square	
				\bigvee		
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?			\square	
				\checkmark		
6.04	\$9.7	Are construction works restricted to works area which are clearly defined?				
				\sim		
6.05	S9.7	For slope mitigation works within the Clear Water Bay Country Park, are tree felling and		\square	\square	
		damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and	ן ∟	ل		
		rock dowels adjusted during detailed design, and a setback distance from existing trees is	1			
		recommended to be maintained as far as practical?	<u> </u>			
6.06	6 S9.7	Are pruning of tree canopies along the alignment of the flexible barriers limited to a		\checkmark		
		minimum?				
6.07	S9.7	Are the alignment of flexible barriers optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable? Are the		\checkmark		
		alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these	e			
			1			
	8 60 7	individuals? At the detailed design stage prior to the commencement of the slope mitigation works, i				
6.0	8 S9.7	At the detailed design suggeption to an appendix a suggest and a suggest	y L	\vee		
		······································				

ltem	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
		Country Park to assess the condition and identify the location of each individual of				
		Marsdenia lachnostoma and other flora species of conservation interest that may be directly				
		affected by the construction works?				
6.09	S 9.7	Is temporary fencing installed to fence off the concerned species either in groups of			\square	
		individually within the works area and in the close proximity to prevent from being				
		damaged and disturbed during construction? Is a sign identifying the site attached to the				
		fence and flagging tape shall be attached to the individuals to visualize their locations?				
6.10	S9.7	Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or				
		other flora species of conservation interest, if found) adjacent to the proposed alignment of				
		the flexible barriers prepared to protect the species?				
6.11	S9.7	Is any induction training provided to all site personnel in order to brief them on this flora of			\square	
		conservation interest including the locations and their importance?				
6.12	S9.7	Is the resident site supervisory staff closely monitor the conditions of concerned			\square	
		individuals during construction of flexible barriers in the close proximity?				
6.13	S9.7	Are fences erected along the boundary of the works area before the commencement of				
		works to prevent vehicle movements and encroachment of personnel onto adjacent areas?				
6.14	S9.7	Is regular check of the work site boundaries performed to ensure that they are not breached			\square	
		and that damage does not occur to surrounding areas?		\smile		
6.15	\$9.7	Is any damage and disturbance avoided, particularly those caused by filling and illegal				
		dumping, to the surrounding habitats through proper management of waste disposal?				
6.16	\$9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and				
		shrubland-grassland immediately after completion of construction works, through on-site	\bigvee			
		tree/shrub planting?				
6.15	S9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro-seeding				
		and planting of climbers and native shrub seedlings where practical upon completion of the	\bigvee			
		slope mitigation works?				
7.00		Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions,				
		asphyxiation of works and toxicity effects during all works?				
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and				
1.02		excavation as well as creation of confined spaces?		\checkmark		
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in		1		
1.03	512.7	confined spaces provided from the Contractor to the workers?		\square		
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards		/		
/.04	512.7	and presented on the site throughout the works undertaken below grade?		∇		
	612.7	Are the all personnel working on site and all visitor made aware of the possibility of				
7.05	S12.7	ignition of gas, the possible presence of contaminated water and the need to avoid				
		physical contact?				
1	1					

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

			N/A	Yes	No	Photo/Remarks
Item	EIA ref.					
No.						
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes,		_		
		chambers and any confined spaces?				
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or		/		
/.0/	512.7	appropriately qualified person? Are the all measurements being recorded and		\square		
		documented?				
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential				
		hazards?				
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by		/		
		the drilling contractor prior to the commencement of the site works?				
7.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the				
7.10	512.7					
		grilled metal covers being used for below grade cable trenches?				
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and				
		base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at		\checkmark		
		each manhole or utility pit?				
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site				
		posted in prominent places?		∇		
		bour				
				/		
8.00		Overall				
8.01		Is the EM&A properly implemented in general?				

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Observation: NA Reminder. . General House Keeping was reminded. (Regular clearing of C&D waste stored on pite). 2). Contractor was reminded to remove the rubbish from the AI × rullah. Signatures: Supervising Officer's IEC's WSD's Contractor's ET Representative Representative Representative Representative Representative eung (Name: Derek Lai) (Name:) (Name:) (Name: (Name: Jacky Leung

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: <u>28</u>	Feb 202)	Inspected by:	ET: JA Contractor: Mr.	oky Lenna Brian Karollyis	41	aymond Kok Lowis Kinan	WSD: C. K. Yip
Inspection Time:	09:00				Tiffer	1.		
Weather	7				-			
Condition	Sunny	Fine	Overcast	Drizzle	Rain	Storm	Hazy	
Temperature	LK C		Humidity	High	Moderate	Low		
Wind	Calm	Light	Breeze	Strong				

ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
0.00 0.01		General Is the current Environmental Permit displayed conspicuously at all vehicle site entrances/exits for public's information at any time?				
0.02		Is ET Leader's log-book kept readily available for inspections?		J		
1.00 1.01	S4.8.1	Construction Dust Are dusty materials, such as excavated materials, building debris and construction materials, and exposed earth surface properly covered to prevent dust emission?				
1.02	S4.8.1	Are screenings, enclosures, water spraying or vacuum cleaning devices provided to dusty construction works for dust suppression?				
1.03	S4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?				
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		J		
1.05	S4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\square		
1.06	S4.8.1	Are road section near the site exit free from dusty material?				-
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize dust emission during vehicle movement?		\Box		paved
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty materials?	\checkmark			No loading and Transfer Works
1.09	S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and leaving the site?				No dump Truck observed.
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal of boulders, poles, pillars sprayed with water to maintain the entire surface wet?				
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction activity on site?				
1.12	S4.8.1	Does the operation of plants on site free form dark smoke emission?				NR1419 Label

ltem No.	EIA ref.	Ruce no. 13/WSD/17 Design, Build and Operate First Stage of T	N/A	Yes	No	Photo/Remarks
1.13	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?				
1 1 4	S4.8.1					
		Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?	\checkmark			
1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?	\checkmark			
1.16	S4.8.1	Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?				
1.17	S4.8.1	Is open burning prohibited?				
2.00		Construction Noise (Airborne)		V		
	S5.7	Are quiet plants adopted on site?				QPME Jakel
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive niose?		\checkmark		
2.03	S5.7	Are plants throttled down or turned off when not in use?		$\overline{\mathbf{N}}$	\Box	
2.04	\$5.7	Are the plants known to emit noise strongly in one direction oriented to face away from NSRs?				
.05	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?				-
.06	S5.7	Are silencers, mufflers and enclosures provided to plants?				
.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?				
.08		Are purposely-built site hoarding construction with appropriate materials provided along the site boundary?				
.09		Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?				
10	\$5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?		6P 8	$\overline{\Box}$	
		Are valid noise emission label(s) affixed to all air compressors operating on site?				
.12		Are all construction noise permit(s) applied for percussive piling work?				
13		Are construction noise permit(s) applied for general construction works during restricted hours?	X	$\overline{\mathbf{N}}$		
14	5.7	Are valid construction noise permit(s) displayed at all vehicular exits?				
00		Nater Quality			<u> </u>	
		s effluent discharge license obtained for wastewater discharge from site?		\checkmark		-
.02 5		s effluent discharged according to the effluent discharge license?		\checkmark		
03 S	6.9	s wastewater discharge from site properly treated prior to discharge?		\Box		

0

Acuity Sustainability Consulting Limited Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

v.e	contri	act no. 13/WSD/17 Design, build and Operate First Stage of is	cung nina	n o beo	annatio	
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?				
3.05	S6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to				
		remove sand/silt particles from runoff?		1		
3.06	S6.9	Is surface runoff diverted to sedimentation facilities?		r/		
3.07	S6.9	Is the drainage system properly maintained?	κ.	\checkmark		
3.08		Are construction works carefully programmed to minimize soil excavation works during rainy seasons?	\checkmark			
3.09		Are exposed soil surface protected by paving as soon as possible to reduce the				
		potential of soil erosion?	\checkmark			
3.10	S6.9	Are temporary access roads protected by crushed gravel?				-
3.11	S6.9	Are exposed slope surface properly protected?		\checkmark		
3.12	S6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary, backfilled in short sections after excavation?	\checkmark			
3.13	S6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar				
		fabric during construction?		\checkmark		
3.14	S6.9	Is runoff from wheel-washing facilities avoided?		\int		
3.15	S6.9	ls oil leakage or spillage prevented?		\checkmark		Reminder
3.16	S6.9	Are there any measures to prevent the release of oil and grease into the storm				
		drainage system?		\checkmark		
3.17	S6.9	Are the oil interceptors/ grease traps properly maintained?	\checkmark			
3.18	S6.9	Are debris and rubbish generated on site collected, handled and disposed of properly to avoid them entering the streams?				Reminder 2
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank?		\checkmark		7
3.20	S6.9	Are tanks, containers, storage area bunded and the locations locked as far as possible from the sensitive watercourse and stormwater drains?				
3.21	860	Are sufficient chemical toilets provided on site to handle sewage from construction				
5.21	30.9	work force?				6
3.22	S6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets provided				
		by the licensed contractors?		\vee		
3.23	S6.9	Is concrete washing water properly collected and treated prior to discharge?				
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of				
		suspended solids to nearby sensitive receivers?				
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?	\square			

	Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant										
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks					
	S6.9	Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake?	$\overline{\mathbf{v}}$								
	S6.9	Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m ³ closed grab?									
	S6.9	Is the grab operated in slow and controlled manner such that the impact to seabed by the grab when being lowered could be minimized? Is the operator ensured the grab be properly closed before lifting the grab?									
3.29		Is the maximum allowed dredging rate at the seawater intake limited to 750 m^3/day while the maximum allowed dredging rate at the submarine outfall is 3,500 m^3/day ?	\checkmark								
3.30	S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO)?	\checkmark								
3.31		Are disposal vessels fitted with tight bottom seals in order to prevent leakage of material during transport?	V								
3.32		Are barges filled to a level which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action?	V								
3.33		Are excess materials cleaned from decks and exposed fittings before the vessel is moved from the dredging area after dredging?				_					
3.34		Are the contractor(s) confirmed that the works cause no visible foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the dredging site?		\checkmark							
3.35		When the dredged material has been unloaded at the disposal areas, is any material accumulated on the deck or other exposed parts of the vessel removed and placed in the hold or a hopper?									
3.36		Is dredger maintained adequate clearance between vessels and the seabed at all states of the tide and reduce operations speed to ensure that excessive turbidity is not generated by turbulence from vessel movement or propeller wash?		\square							
3.37		Is the contractor shall regularly inspect the silt curtains and check that they are moored and marked to avoid danger to marine traffic? Is regular inspection on the integrity of the silt curtain carried out by the contractor and any damage to the silt curtain shall be repaired by the contractor promptly?									
3.38		Are all vessels have a clean ballast system?		\checkmark							
3.39		Are all vessels well maintained and inspected before use to limit any potential discharges to the marine environment?		\checkmark							
3.40		Is any discharge of sewage/grey wastewater? Is wastewater from potentially contaminated area on working vessels should be minimized and collected?		\checkmark							
3.41	56.9	is any soil waste disposed overboard?									

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant N/A Yes No Photo/Remarks EIA ref. Item No 4.00 Waste Management Is a trip-ticket system implemented to monitor the disposal of C&D and solid wastes at 4.01 S8.5 public filling facilities and landfills? Is a recording system implemented to record the amount of wastes generated, recycled and 4.02 S8.5 disposed of? IS the Contractor registered as a chemical waste producer? 4.03 S8.5 Are chemical waste separated from other waste and collected by a licensed chemical waste 4.04 S8.5 collector? Are trip tickets for chemical waste disposal available for inspection? 4.05 S8.5 Is chemical waste reused and recycled on site as far as practicable? 4.06 S8.5 4.07 S8.5 Are all containers for chemical waste properly labelled? Is chemical waste storage area used solely for storage of chemical waste and properly 4.08 S8.5 labelled? Are incompatible chemical wastes stored in different areas? 4.09 S8.5 Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated? 4.10 \$8.5 4.11 S8.5 Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide? Are a routine cleaning and maintenance programme implemented for drainage systems, 4.12 S8.5 sump pits, and oil interceptors? 4.13 S8.5 Are sufficient general refuse disposal/collection points provided on site? 4.14 S8.5 Is general refuse disposed of properly and regularly? Reminder2 Are appropriate measures adopted to minimize windblown litter and dust during 4.15 S8.5 transportation of waste? Are individual collectors for aluminum cans, plastic bottles and packaging material and 4.16 S8.5 office paper provided to encourage waste segregation? 4.17 S8.5 Are C&D wastes sorted on site? 4.18 S8.5 Are C&D waste disposed of properly? Are unused C&D materials or chemicals recycled or reused to reduce the quantity of 4.19 S8.5 waste Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site? 4.20 S8.5

_	Con	tract no. 13/WSD/17 Design, Build and Operate First Stage of	Tseung Ky	van O D	esalinati	on Plant
ltem	EIA ref.		N/A	Yes	No	Photo/Remarks
No.	4		3			
1 21	S8.5	And the second sec				
4.21	30.5	Are the construction materials stored properly to minimize the potential for damage c contamination?				
4 22	S8.5					
7.22	30.5	Is a dumping license obtained to deliver public fill to public filling areas?		\square		
				V		
5.00		Landscape and Visual				
5.01	S11.10	Are Is site hoarding provided?				
5.00	& 11.11					
5.02	STI.10 2	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?				4
5.02						
5.03	11.11	els construction light oriented away from the sensitive receivers?				
5.04	S11.10		\sim			
5.04	& 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?				
5.05				\checkmark		
0.00	11.11	Are damages to trees outside site boundary due construction works avoided?				
5.06						
0.00	11.11	Is excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?				
5.07		The second				
	11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?	17			
5.08	S11.10 &	Are surgery works carried out for damaged trees?				-
	11.11	a subject works carried out for damaged frees?	Ń			
6.00		Ecology				
6.01		Is site runoff properly treated to prevent any silly runoff?				
6.02	\$9.7	Are silt trap installed and well-maintained?				
				\square		
.03	\$9.7	Are stockpiles properly covered to avoid generating silty runoff?				
5.04	\$9.7	Are construction works restricted to works area which are clearly defined?				
		and which are clearly defined?			\square	
.05	\$9.7	For slope mitigation works within the Clear Water Bay Country Park, are tree felling and				
		damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and			\square	
		rock dowels adjusted during detailed design, and a setback distance from existing trees is				
		recommended to be maintained as far as practical?				
.06		Are pruning of tree canopies along the alignment of the flexible barriers limited to a				
		ninimum?		V		
07 9		Are the alignment of flexible barriers optimized to preserve all species of conservation				
		nterest and minimize the impact to the existing vegetation as far as practicable? Are the		V		
		lignment of flexible barriers positioned at mininmum 1.5 m in a radius away from these				
.08 5		ndividuals?				
		At the detailed design stage prior to the commencement of the slope mitigation works, is				
	^	egetation survey carried out at the slope mitigation areas within the Clear Water Bay				

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
		Country Park to assess the condition and identify the location of each individual of				
		Marsdenia lachnostoma and other flora species of conservation interest that may be directly				
		affected by the construction works?				
6.09	S9.7	Is temporary fencing installed to fence off the concerned species either in groups of				
		individually within the works area and in the close proximity to prevent from being				
		damaged and disturbed during construction? Is a sign identifying the site attached to the				
		fence and flagging tape shall be attached to the individuals to visualize their locations?				
6.10	S9.7	Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or		/		
		other flora species of conservation interest, if found) adjacent to the proposed alignment of				
		the flexible barriers prepared to protect the species?				
6.11	S9.7	Is any induction training provided to all site personnel in order to brief them on this flora of		6		
		conservation interest including the locations and their importance?				
6.12	S9.7	Is the resident site supervisory staff closely monitor the conditions of concerned				
		individuals during construction of flexible barriers in the close proximity?				
6.13	S9.7	Are fences erected along the boundary of the works area before the commencement of				
		works to prevent vehicle movements and encroachment of personnel onto adjacent areas?				
6.14	S9.7	Is regular check of the work site boundaries performed to ensure that they are not breached	\square	1		
		and that damage does not occur to surrounding areas?				
6.15	S9.7	Is any damage and disturbance avoided, particularly those caused by filling and illegal				
		dumping, to the surrounding habitats through proper management of waste disposal?				
6.16	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and		\square		
		shrubland-grassland immediately after completion of construction works, through on-site				
		tree/shrub planting?				
6.15	S9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro-seeding				
		and planting of climbers and native shrub seedlings where practical upon completion of the				
		slope mitigation works?				
7.00		Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions,		\checkmark		
		asphyxiation of works and toxicity effects during all works?				
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and				
		excavation as well as creation of confined spaces?				
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in				
	1	confined spaces provided from the Contractor to the workers?				<u> </u>
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards				
		and presented on the site throughout the works undertaken below grade?		\checkmark		
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of				
		ignition of gas, the possible presence of contaminated water and the need to avoid				·
		physical contact?			-	

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant EIA ref. Item N/A Yes No Photo/Remarks No. 7.06 Is the monitoring of landfill gas being undertaken in all excavations, manholes, S12.7 chambers and any confined spaces? 7.07 S12.7 Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented? 7.08 S12.7 Is the drilling proceeded with adequate care and precautions against the potential hazards? 7.09 Is the method statement covering all normal and emergency procedures provided by S12.7 the drilling contractor prior to the commencement of the site works? Are the below ground services entries being sealed to prevent gas entry? Are the 7.10 S12.7 grilled metal covers being used for below grade cable trenches? Is each manhole or utility pit monitored with two measurements (at mid-depth and 7.11 S12.7 base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit? 7.12 S12.7 Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places? 8.00 Overall 8.01 Is the EM&A properly implemented in general?

0

Acuity Sustainability Consulting Limited

Unit C, 11/F., Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon T: 2333-6823 | F: 2333-1316 | E: genera@acuityhk.com | www.acuityhk.com

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Reminder = Used chemical should be stored properly. Contractor was reminded that General refuse should be disposed of properly and avoid placing them on ground Signatures: Supervising Officer's IEC's WSD's ET Contractor's Representative Representativ Representative Representative Representative (Name: (Name: (Name: Name) (Name: Bria EUG) Rhiw

Appendix J

Complaint Log

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Statistical Summary of Environmental Complaints

Reporting Period	Environmental	Environmental Complaint Statistics								
	Frequency	Cumulative	Complaint Nature							
1 – 28 February 2022	0	0	N/A							

Statistical Summary of Environmental Summons

Reporting Period	Environmental S	Environmental Summons Statistics								
	Frequency	Cumulative	Details							
1 – 28 February 2022	0	0	N/A							

Statistical Summary of Environmental Prosecution

Reporting Period	Environmental P	Prosecution Statistics	
	Frequency	Cumulative	Details
1 – 28 February 2022	0	0	N/A

Appendix K

Impact Monitoring Schedule of Next Reporting Month

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

		Mar-22	
Mon	Tue Wed	Thu Fri	Sat
	1 2	3 4	5
	Impact Water Quality monitoring for	Impact Water Quality monitoring for	Impact Water Quality monitoring for
	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR
	WSR33, WSR36, WSR37	WSR36, WSR37	WSR33, WSR36, WSR37
	Tidal Period:	<u>Tidal Period:</u>	Tidal Period:
	Ebb Tide: 09:56-13:31	Ebb Tide: 10:51-15:13	Ebb Tide: 11:46-16:41
	Flood Tide: 16:55-20:20	Flood Tide: 15:13-22:00	Flood Tide: 05:00-11:46
	Monitoring Time:	Monitoring Time:	Monitoring Time:
	Mid-ebb: 09:58-13:28	Mid-ebb: 11:17-14:47	Mid-ebb: 12:28-15:58
	Mid-flood:15:10-18:40	Mid-flood: 15:33-19:00	Mid-flood: 08:00-11:25
	MId-1000.13.10-18.40	MR-1000. 15.55-19.00	Mid-fi00d. 08.00-11.25
-			
7	8 9	10 11	12
	Impact Water Quality monitoring for	Impact Water Quality monitoring for	Impact Water Quality monitoring for
	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSF
	WSR33, WSR36, WSR37	WSR36, WSR37	WSR33, WSR36, WSR37
	Tidal Period:	Tidal Period:	Tidal Period:
	Ebb Tide: 13:03-19:00	Ebb Tide: 14:00-22:00	Ebb Tide: 16:00-23:59
	Flood Tide: 06:00-13:03	Flood Tide: 06:00-14:00	Flood Tide: 00:28-16:00
	Monitoring Time:	Monitoring Time:	Monitoring Time:
	Mid-ebb: 14:16-17:46	Mid-ebb: 16:15-19:00	Mid-ebb:16:23-19:00
	Mid-flood: 08:00-11:16	Mid-flood: 08:15-11:45	Mid-flood:11:43-15:13
14	15 16	17 18	19
14	Inpact Water Quality monitoring for	In Impact Water Quality monitoring for	Impact Water Quality monitoring for
	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR33,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSF
	WSR33, WSR36, WSR37	WSR36, WSR37	WSR33, WSR36, WSR37
	Tidal Period:	<u>Tidal Period:</u>	Tidal Period:
	Ebb Tide: 09:30-12:30	Ebb Tide: 09:45-14:17	Ebb Tide: 10:25-16:00
	Flood Tide: 12:30-19:07	Flood Tide: 14:17-21:00	Flood Tide: 04:00-10:25
	Monitoring Time:	Monitoring Time:	Monitoring Time:
	Mid-ebb: 09:15-12:21	Mid-ebb; 10:16-13:46	Mid-ebb: 11:27-14:57
	Mid-flood: 14:03-17:33	Mid-flood: 15:53-19:00	Mid-flood: 08:00-10:05
21	22 23	24 25	26
	Impact Water Quality monitoring for	Impact Water Quality monitoring for	Impact Water Quality monitoring for
	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33,	CE, CF, WSR1, WSR2, WSR3, WSR4, WS
	WSR33, WSR36, WSR37	WSR36, WSR37	WSR33, WSR36, WSR37
	Tidal Period:	Tidal Period:	Tidal Period:
	Ebb Tide: 12:00-18:04	Ebb Tide: 13:00-20:25	Ebb Tide: 15:38-23:59
	Flood Tide: 05:22-12:00	Flood Tide: 06:00-13:00	Flood Tide: 00:00-15:38
	Monitoring Time:	Monitoring Time:	Monitoring Time:
	Mid-ebb: 13:17-16:47	Mid-ebb: 14:57-18:27	Mid-ebb: 16:03-19:00
	Mid-flood:08:10-11:40	Mid-flood: 08:00-11:15	Mid-flood: 08:00-11:30
28	29 30	31	
	Impact Water Quality monitoring for	Impact Water Quality monitoring for	
	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16,	CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33,	
	WSR33, WSR36, WSR37	WSR36, WSR37	
	Tidal Period:	Tidal Period:	
	Ebb Tide: 09:00-12:36	Ebb Tide: 09:42-14:24	
	Flood Tide: 14:24-21:08	Flood Tide: 14:24-21:08	
	Monitoring Time:	Monitoring Time:	
	Mid-ebb: 09:03-12:33	Mid-ebb: 10:18-13:48	
	Mid-flood:14:12-17:42	Mid-flood:14:44-18:14	

Monitoring Parameters: Dissolved oxygen, Temperature, pH, Turbidity, Salinity, Suspended Solids

Appendix L

Water Quality and Landfill Gas Monitoring Data

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
CE	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	10:38	8.87	8.31	34.29	19.88	3.41	4
CE	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	10:38	8.75	8.26	34.29	19.74	3.36	4
CE	20220204	Cloudy	Moderate	Mid-Flood	Middle	10.75	10:37	8.75	8.3	34.28	19.8	3.63	6
CE	20220204	Cloudy	Moderate	Mid-Flood	Middle	10.75	10:37	8.76	8.27	34.19	19.9	3.22	5
CE	20220204	Cloudy	Moderate	Mid-Flood	Bottom	20.5	10:36	8.81	8.25	34.21	19.75	3.65	4
CE	20220204	Cloudy	Moderate	Mid-Flood	Bottom	20.5	10:36	8.83	8.23	34.14	19.88	3.42	4
CF	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	8.93	8.13	34.25	20.1	3.38	5
CF	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	8.95	8.12	34.14	20.25	3.9	5
CF	20220204	Cloudy	Moderate	Mid-Flood	Middle	10.7	8:01	8.93	8.14	34.2	20.13	3.86	5
CF	20220204	Cloudy	Moderate	Mid-Flood	Middle	10.7	8:01	9.04	8.13	34.13	20.12	3.6	6
CF	20220204	Cloudy	Moderate	Mid-Flood	Bottom	20.4	8:00	8.99	8.19	34.11	20.09	4.51	6
CF	20220204	Cloudy	Moderate	Mid-Flood	Bottom	20.4	8:00	8.98	8.11	34.26	20.25	4.31	4
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:25	8.45	8.22	33.56	20.13	2.71	7
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:25	8.49	8.17	33.62	20.24	2.53	5
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Middle	4.55	8:24	8.47	8.18	33.64	20.17	1.82	6
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Middle	4.55	8:24	8.57	8.22	33.52	20.14	1.86	6
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Bottom	8.1	8:23	8.58	8.2	33.77	20.24	2.13	5
WSR01	20220204	Cloudy	Moderate	Mid-Flood	Bottom	8.1	8:23	8.57	8.17	33.57	20.06	2.14	5
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	9.36	8.23	33.75	20.27	1.73	5
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	9.28	8.23	33.77	20.33	2.07	6
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Middle	4.6	8:42	9.2	8.3	33.76	20.38	1.94	2.5
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Middle	4.6	8:42	9.23	8.28	33.69	20.31	1.85	2.5
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Bottom	8.2	8:41	9.36	8.23	33.79	20.42	1.85	3
WSR02	20220204	Cloudy	Moderate	Mid-Flood	Bottom	8.2	8:41	9.19	8.23	33.58	20.34	2.05	4
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:57	9.29	8.36	33.83	19.67	1.9	8
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	8:57	9.13	8.33	33.75	19.68	2.23	10
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.95	8:56	9.29	8.31	33.61	19.59	1.83	5
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.95	8:56	9.14	8.35	33.62	19.59	1.61	6
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.9	8:55	9.18	8.34	33.73	19.54	1.35	7
WSR03	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.9	8:55	9.13	8.3	33.67	19.68	1.36	5

WSR04	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:11	8.39	8.35	33.77	19.95	2.02	6
WSR04	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:11	8.51	8.34	33.65	19.89	2.28	5
WSR04	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.75	9:10	8.43	8.35	33.72	19.88	1.92	5
WSR04	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.75	9:10	8.4	8.37	33.63	19.95	2.19	5
WSR04	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.5	9:09	8.46	8.37	33.66	20.07	1.88	7
WSR04	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.5	9:09	8.51	8.3	33.76	19.93	2.14	6
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	10:15	9.08	8.21	33.9	19.93	2.6	5
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	10:15	9	8.17	33.73	19.9	2.94	3
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Middle	8	10:14	9.07	8.24	33.8	19.99	2.65	5
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Middle	8	10:14	9.13	8.23	33.73	20.01	2.68	4
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Bottom	15	10:13	9.08	8.23	33.85	19.9	2.12	4
WSR16	20220204	Cloudy	Moderate	Mid-Flood	Bottom	15	10:13	9.12	8.23	33.74	19.99	2.29	4
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:26	9.19	8.25	33.51	20.25	2.68	4
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:26	9.2	8.23	33.47	20.3	2.25	4
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:25	9.26	8.24	33.59	20.3	2.75	б
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:25	9.18	8.18	33.43	20.42	2.44	5
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:24	9.18	8.24	33.58	20.38	2.23	5
WSR33	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:24	9.23	8.23	33.64	20.35	2.18	5
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:39	8.97	8.18	33.73	19.97	2.23	5
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:39	9.02	8.15	33.67	20.09	2.56	4
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.75	9:39	8.88	8.15	33.57	20.04	2.5	4
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Middle	3.75	9:39	8.9	8.22	33.6	20.06	2.72	3
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.5	9:38	8.92	8.15	33.74	20	1.93	6
WSR36	20220204	Cloudy	Moderate	Mid-Flood	Bottom	6.5	9:38	8.92	8.16	33.62	19.97	2.17	4
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:52	8.68	8.14	34.04	20.29	3.03	4
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Surface	1	9:52	8.7	8.14	34.08	20.2	2.56	6
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Middle	4	9:51	8.76	8.16	34.27	20.31	2.3	8
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Middle	4	9:51	8.71	8.15	34.1	20.25	2.14	6
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Bottom	7	9:50	8.84	8.19	34.26	20.2	2.37	3
WSR37	20220204	Cloudy	Moderate	Mid-Flood	Bottom	7	9:50	8.81	8.17	34.03	20.2	2.16	4
CE	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	13:17	8.26	8.31	33.83	20.34	3.7	4
CE	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	13:17	8.3	8.34	33.67	20.38	3.98	4
CE	20220204	Cloudy	Moderate	Mid-Ebb	Middle	10.7	13:16	8.2	8.38	33.67	20.44	3.91	7

CE	20220204	Cloudy	Moderate	Mid-Ebb	Middle	10.7	13:16	8.25	8.37	33.77	20.42	3.76	6
CE	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	13:15	8.23	8.31	33.81	20.40	3.52	9
CE	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	13:15	8.27	8.36	33.63	20.35	3.48	12
CF	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:51	8.56	8.34	34.13	20.17	2.45	10
CF	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:51	8.61	8.4	34.16	20.24	2.45	13
CF	20220204	Cloudy	Moderate	Mid-Ebb	Middle	9.65	15:50	8.53	8.39	34.19	20.19	2.75	6
CF	20220204	Cloudy	Moderate	Mid-Ebb	Middle	9.65	15:50	8.58	8.34	34.10	20.24	2.8	8
CF	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	18.3	15:49	8.62	8.34	34.15	20.15	2.88	7
CF	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	18.3	15:49	8.64	8.36	34.00	20.22	2.76	6
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:27	9.22	8.31	33.32	20.40	2.42	5
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:27	9.19	8.36	33.44	20.41	2.22	5
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.45	15:26	9.29	8.33	33.32	20.37	2.14	12
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.45	15:26	9.29	8.37	33.45	20.30	2.01	10
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	7.9	15:25	9.29	8.33	33.31	20.37	1.59	6
WSR01	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	7.9	15:25	9.28	8.31	33.39	20.35	1.56	5
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:08	8.51	8.28	33.56	19.92	1.96	7
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	15:08	8.58	8.25	33.58	19.84	2.1	6
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.7	15:07	8.55	8.31	33.63	19.85	2.18	3
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.7	15:07	8.58	8.29	33.73	19.89	1.96	4
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	15:06	8.57	8.31	33.55	19.85	2.12	5
WSR02	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	15:06	8.5	8.23	33.57	19.91	2.24	4
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:53	8.81	8.16	33.46	19.86	2.22	6
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:53	8.84	8.16	33.35	19.84	2.56	6
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.95	14:52	8.92	8.12	33.30	19.81	2.73	5
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.95	14:52	8.8	8.13	33.32	19.87	2.4	6
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	14:51	8.88	8.17	33.51	19.79	2.07	5
WSR03	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	14:51	8.9	8.15	33.38	19.79	1.82	6
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:41	8.67	8.31	34.36	20.03	3.23	5
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:41	8.72	8.35	34.33	20.04	3.15	6
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.55	14:40	8.7	8.33	34.34	20.05	2.24	6
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.55	14:40	8.74	8.32	34.32	20.04	2.65	6
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	14:39	8.72	8.33	34.28	19.98	2.55	5
WSR04	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	14:39	8.62	8.31	34.41	20.04	2.29	4

WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	13:38	9.22	8.43	34.16	20.29	2.43	6
WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	13:38	9.18	8.43	34.13	20.28	2.52	4
WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Middle	7.75	13:37	9.12	8.43	34.11	20.35	2.48	6
WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Middle	7.75	13:37	9.11	8.46	34.19	20.28	2.79	5
WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	14.5	13:36	9.08	8.37	34.15	20.30	1.51	4
WSR16	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	14.5	13:36	9.13	8.42	34.21	20.36	1.7	4
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:27	8.75	8.39	33.30	19.96	2.61	4
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:27	8.79	8.44	33.28	19.95	3.05	6
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.85	14:26	8.72	8.36	33.49	19.95	2.48	5
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.85	14:26	8.74	8.36	33.29	20.00	2.64	6
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	14:25	8.86	8.37	33.32	19.98	2.18	4
WSR33	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	14:25	8.81	8.36	33.36	19.99	2.48	6
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:14	8.96	8.25	33.53	20.16	2.08	5
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:14	8.98	8.26	33.55	20.21	1.86	5
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.25	14:14	8.93	8.21	33.59	20.17	1.64	6
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Middle	3.25	14:14	8.99	8.27	33.43	20.19	1.39	4
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	5.5	14:13	9.03	8.19	33.55	20.21	1.16	5
WSR36	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	5.5	14:13	9.01	8.26	33.43	20.17	1.23	5
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:00	8.71	8.34	34.27	20.17	2.43	4
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Surface	1	14:00	8.82	8.34	34.28	20.14	2.2	6
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.2	13:59	8.79	8.32	34.29	20.22	2.47	6
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Middle	4.2	13:59	8.69	8.31	34.22	20.16	2.32	5
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	13:58	8.84	8.33	34.25	20.21	2.3	4
WSR37	20220204	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	13:58	8.76	8.35	34.23	20.18	2.12	4
CE	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	12:19	9.43	8.27	34.01	19.37	3.06	2.5
CE	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	12:19	9.33	8.33	33.95	19.30	3.15	2.5
CE	20220208	Cloudy	Moderate	Mid-Flood	Middle	10.6	12:18	9.41	8.29	34.06	19.36	3.24	5
CE	20220208	Cloudy	Moderate	Mid-Flood	Middle	10.6	12:18	9.29	8.34	33.94	19.37	2.99	5
CE	20220208	Cloudy	Moderate	Mid-Flood	Bottom	20.2	12:17	9.34	8.35	34.03	19.37	3.43	3
CE	20220208	Cloudy	Moderate	Mid-Flood	Bottom	20.2	12:17	9.39	8.3	34.12	19.32	3.25	3
CF	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	9:44	9.39	8.25	33.68	19.11	3.84	3
CF	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	9:44	9.38	8.19	33.77	19.14	3.96	4
CF	20220208	Cloudy	Moderate	Mid-Flood	Middle	10.65	9:43	9.42	8.19	33.74	19.13	3.9	3

CF	20220208	Cloudy	Moderate	Mid-Flood	Middle	10.65	9:43	9.46	8.21	33.83	19.14	4.15	2.5
CF	20220208	Cloudy	Moderate	Mid-Flood	Bottom	20.3	9:42	9.39	8.19	33.74	19.17	4.69	3
CF	20220208	Cloudy	Moderate	Mid-Flood	Bottom	20.3	9:42	9.29	8.21	33.76	19.08	4.02	4
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:06	9.36	8.4	33.11	19.61	3.04	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:06	9.56	8.43	33.15	19.54	2.92	3
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.55	10:05	9.5	8.46	33.10	19.56	2.96	3
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.55	10:05	9.34	8.41	33.10	19.66	2.68	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Bottom	8.1	10:04	9.5	8.47	33.00	19.52	2.91	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Flood	Bottom	8.1	10:04	9.46	8.46	33.08	19.66	2.78	3
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:23	9.54	8.26	33.82	19.22	2.35	3
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:23	9.53	8.29	33.89	19.26	2.14	3
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.95	10:22	9.51	8.26	33.82	19.27	2.22	3
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.95	10:22	9.61	8.3	33.91	19.20	2.3	2.5
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Bottom	8.9	10:21	9.54	8.24	33.99	19.27	1.91	3
WSR02	20220208	Cloudy	Moderate	Mid-Flood	Bottom	8.9	10:21	9.41	8.32	33.83	19.20	2.16	4
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:37	8.81	8.42	33.53	19.34	3.26	2.5
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:37	8.98	8.42	33.49	19.30	2.83	2.5
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.9	10:36	8.88	8.42	33.49	19.33	2.56	3
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.9	10:36	8.87	8.44	33.48	19.38	3.01	4
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.8	10:35	9	8.39	33.49	19.44	2.42	4
WSR03	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.8	10:35	8.85	8.41	33.50	19.43	2.08	3
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:50	8.59	8.44	32.96	19.41	2.95	3
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	10:50	8.74	8.44	33.01	19.40	2.68	4
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.9	10:49	8.73	8.41	33.01	19.40	2.81	3
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.9	10:49	8.8	8.48	33.10	19.37	3.25	3
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.8	10:48	8.6	8.4	33.11	19.42	2.87	4
WSR04	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.8	10:48	8.71	8.45	32.98	19.33	3.06	3
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:56	8.71	8.35	34.04	19.32	3.04	3
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:56	8.68	8.4	33.93	19.18	3.08	3
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Middle	8.25	11:55	8.64	8.33	33.98	19.29	2.66	3
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Middle	8.25	11:55	8.61	8.33	33.94	19.26	2.73	3
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Bottom	15.5	11:54	8.66	8.32	33.88	19.32	2.72	4
WSR16	20220208	Cloudy	Moderate	Mid-Flood	Bottom	15.5	11:54	8.79	8.39	33.92	19.27	3.05	4

WSR33	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:04	8.94	8.32	33.22	19.23	3.22	4
WSR33	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:04	8.92	8.32	33.33	19.35	2.9	4
WSR33	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.5	11:03	8.97	8.3	33.37	19.24	3.07	4
WSR33	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.5	11:03	8.97	8.32	33.25	19.32	2.85	4
WSR33	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6	11:02	8.95	8.33	33.28	19.30	2.3	9
WSR33	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6	11:02	8.78	8.29	33.24	19.27	2.7	10
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:18	8.53	8.32	33.68	19.00	3.35	4
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:18	8.56	8.3	33.77	19.01	3.17	5
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.75	11:18	8.73	8.32	33.67	18.87	2.92	8
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Middle	3.75	11:18	8.66	8.3	33.75	19.01	2.65	10
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.5	11:17	8.51	8.29	33.79	18.95	2.81	5
WSR36	20220208	Cloudy	Moderate	Mid-Flood	Bottom	6.5	11:17	8.72	8.28	33.77	18.87	2.61	7
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:33	8.86	8.39	33.62	19.32	3.16	4
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Surface	1	11:33	8.75	8.37	33.65	19.33	3.54	5
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.2	11:32	8.86	8.37	33.50	19.26	3.14	4
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Middle	4.2	11:32	8.92	8.36	33.62	19.29	3.17	б
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Bottom	7.4	11:31	8.91	8.33	33.57	19.22	2.8	4
WSR37	20220208	Cloudy	Moderate	Mid-Flood	Bottom	7.4	11:31	8.83	8.38	33.50	19.29	2.89	4
CE	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	15:49	8.89	8.34	33.98	19.33	4.47	10
CE	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	15:49	9.04	8.41	33.98	19.44	4.85	10
CE	20220208	Cloudy	Moderate	Mid-Ebb	Middle	10.5	15:48	9.02	8.35	33.87	19.46	4.86	3
CE	20220208	Cloudy	Moderate	Mid-Ebb	Middle	10.5	15:48	8.9	8.41	34	19.38	4.43	3
CE	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	20	15:47	8.87	8.41	33.92	19.36	5.09	7
CE	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	20	15:47	9.05	8.34	33.91	19.4	5.34	8
CF	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	18:20	8.33	8.38	33.28	19.56	3.15	3
CF	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	18:20	8.33	8.33	33.36	19.47	3.05	4
CF	20220208	Cloudy	Moderate	Mid-Ebb	Middle	10.2	18:19	8.39	8.32	33.34	19.52	3.67	2.5
CF	20220208	Cloudy	Moderate	Mid-Ebb	Middle	10.2	18:19	8.43	8.37	33.32	19.51	3.42	2.5
CF	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	19.4	18:18	8.38	8.32	33.35	19.41	4.02	4
CF	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	19.4	18:18	8.26	8.38	33.37	19.46	4.27	5
WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:57	8.82	8.34	33.11	19.49	3.09	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:57	9.04	8.39	33.12	19.53	3.04	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Middle	4.7	17:56	8.86	8.4	33.13	19.51	2.9	2.5

WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Middle	4.7	17:56	8.84	8.33	33.2	19.51	2.75	3
WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	17:55	8.92	8.37	33.11	19.45	2.83	2.5
WSR01	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	17:55	8.82	8.35	33.16	19.49	2.56	2.5
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:46	9.14	8.35	32.82	19.35	2.59	5
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:46	9.1	8.37	32.93	19.4	2.63	6
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Middle	4.8	17:45	9.22	8.35	32.83	19.41	2.47	8
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Middle	4.8	17:45	9.05	8.33	32.93	19.45	2.44	9
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	8.6	17:44	9.11	8.31	32.9	19.37	2.39	7
WSR02	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	8.6	17:44	9.05	8.34	32.8	19.36	2.22	5
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:26	8.56	8.15	33.29	19.47	3.48	5
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:26	8.52	8.11	33.17	19.49	4.13	3
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.75	17:25	8.6	8.13	33.22	19.62	3.66	5
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.75	17:25	8.62	8.09	33.29	19.58	3.43	4
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	17:24	8.58	8.1	33.16	19.61	3.38	3
WSR03	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	17:24	8.42	8.09	33.15	19.49	3.5	4
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:14	8.62	8.41	33.37	19.38	3.62	8
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:14	8.57	8.41	33.28	19.35	3.59	7
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.55	17:13	8.54	8.38	33.27	19.44	2.89	7
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.55	17:13	8.65	8.4	33.26	19.41	3.4	8
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	17:12	8.56	8.38	33.33	19.38	2.95	6
WSR04	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	17:12	8.63	8.37	33.26	19.35	3.11	6
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:11	8.88	8.31	33.78	19.67	2.96	9
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:11	8.75	8.28	33.7	19.57	3.46	8
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Middle	7.85	16:10	8.82	8.28	33.73	19.66	2.81	6
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Middle	7.85	16:10	8.68	8.33	33.71	19.57	3.01	8
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	14.7	16:09	8.82	8.34	33.78	19.63	2.49	10
WSR16	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	14.7	16:09	8.67	8.32	33.73	19.67	2.49	12
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:00	8.56	8.25	33.73	19.5	4.11	17
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	17:00	8.64	8.26	33.74	19.52	4.1	18
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.55	16:59	8.69	8.29	33.77	19.6	3.93	21
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.55	16:59	8.5	8.25	33.74	19.49	3.47	19
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	16:58	8.69	8.28	33.74	19.52	3.72	5
WSR33	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.1	16:58	8.67	8.32	33.74	19.63	3.27	5

WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:46	8.47	8.2	33.14	19.44	3.76	14
WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:46	8.58	8.18	33.09	19.58	4.01	15
WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.5	16:46	8.42	8.19	33.05	19.54	3.4	7
WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.5	16:46	8.56	8.12	33.15	19.53	3.52	6
WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6	16:45	8.6	8.2	33.07	19.43	3.32	4
WSR36	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6	16:45	8.59	8.18	33.15	19.52	3.34	6
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:32	8.49	8.07	33.39	19.54	3.5	5
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Surface	1	16:32	8.54	8.1	33.43	19.56	3.06	5
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.95	16:31	8.38	8.07	33.51	19.58	2.85	10
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Middle	3.95	16:31	8.43	8.08	33.41	19.57	2.53	12
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	16:30	8.52	8.14	33.39	19.51	2.31	12
WSR37	20220208	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	16:30	8.41	8.12	33.48	19.46	2.74	12
CE	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	13:27	9.57	8.38	33.28	19.27	4.87	3
CE	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	13:27	9.63	8.41	33.24	19.23	4.96	3
CE	20220210	Cloudy	Moderate	Mid-Flood	Middle	11.4	13:26	9.45	8.4	33.15	19.14	4.89	3
CE	20220210	Cloudy	Moderate	Mid-Flood	Middle	11.4	13:26	9.47	8.39	33.29	19.27	4.82	4
CE	20220210	Cloudy	Moderate	Mid-Flood	Bottom	21.8	13:25	9.53	8.44	33.13	19.26	4.13	5
CE	20220210	Cloudy	Moderate	Mid-Flood	Bottom	21.8	13:25	9.52	8.37	33.13	19.12	4.37	4
CF	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	10:47	9.51	8.4	33.65	19.17	5.5	4
CF	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	10:47	9.51	8.38	33.79	19.03	5.32	4
CF	20220210	Cloudy	Moderate	Mid-Flood	Middle	9.65	10:46	9.46	8.38	33.66	19.04	5.72	4
CF	20220210	Cloudy	Moderate	Mid-Flood	Middle	9.65	10:46	9.5	8.34	33.65	19.11	5.1	5
CF	20220210	Cloudy	Moderate	Mid-Flood	Bottom	18.3	10:45	9.47	8.35	33.73	19.08	5.62	5
CF	20220210	Cloudy	Moderate	Mid-Flood	Bottom	18.3	10:45	9.49	8.35	33.62	19.15	5.81	4
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:10	9.57	8.32	34.24	19.15	3.74	18
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:10	9.66	8.3	34.20	19.16	3.49	18
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Middle	4.2	11:09	9.64	8.3	34.36	18.98	3.21	4
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Middle	4.2	11:09	9.53	8.28	34.25	19.11	3.05	5
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Bottom	7.4	11:08	9.61	8.27	34.29	19.11	3.29	5
WSR01	20220210	Cloudy	Moderate	Mid-Flood	Bottom	7.4	11:08	9.55	8.33	34.30	19.11	3.3	5
WSR02	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:29	8.95	8.35	33.25	19.40	2.79	6
WSR02	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:29	8.87	8.38	33.24	19.38	3.15	7
WSR02	20220210	Cloudy	Moderate	Mid-Flood	Middle	4.9	11:28	8.98	8.39	33.27	19.34	2.49	б

WSR02	20220210	Cloudy	Moderate	Mid-Flood	Middle	4.9	11:28	8.89	8.4	33.36	19.54	2.55	7
WSR02	20220210	Cloudy	Moderate	Mid-Flood	Bottom	8.8	11:27	8.86	8.33	33.33	19.46	2.06	6
WSR02	20220210	Cloudy	Moderate	Mid-Flood	Bottom	8.8	11:27	8.97	8.35	33.37	19.38	2.03	7
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:43	8.64	8.26	33.76	18.84	2.6	8
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:43	8.52	8.21	33.67	18.93	2.86	9
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Middle	4	11:42	8.67	8.25	33.77	18.86	3.02	7
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Middle	4	11:42	8.49	8.2	33.67	18.96	3.1	9
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Bottom	7	11:41	8.62	8.18	33.79	18.93	2.75	4
WSR03	20220210	Cloudy	Moderate	Mid-Flood	Bottom	7	11:41	8.61	8.19	33.85	18.78	2.48	4
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:57	8.96	8.24	33.53	18.95	2.58	4
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	11:57	9.04	8.27	33.56	18.99	2.93	5
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.9	11:56	8.98	8.25	33.50	18.92	2.87	4
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.9	11:56	9.05	8.25	33.54	18.84	2.45	4
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.8	11:55	8.92	8.24	33.49	18.86	2.52	5
WSR04	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.8	11:55	8.96	8.24	33.57	18.93	2.4	4
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	13:03	8.72	8.27	34.32	19.20	3.21	3
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	13:03	8.66	8.25	34.33	19.34	3.11	4
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Middle	8.5	13:02	8.75	8.22	34.37	19.28	3.1	4
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Middle	8.5	13:02	8.66	8.28	34.23	19.19	2.88	4
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Bottom	16	13:01	8.87	8.28	34.26	19.22	2.87	3
WSR16	20220210	Cloudy	Moderate	Mid-Flood	Bottom	16	13:01	8.8	8.25	34.40	19.33	2.41	2.5
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:12	8.96	8.39	34.07	18.99	3.06	3
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:12	8.92	8.4	34.09	18.90	3.22	4
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.55	12:11	8.88	8.41	34.15	19.11	3.07	2.5
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.55	12:11	8.96	8.41	34.21	18.92	3.31	3
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.1	12:10	8.87	8.39	34.16	19.01	3.33	10
WSR33	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.1	12:10	8.78	8.44	34.08	19.03	3.04	11
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:26	8.99	8.16	33.35	18.99	3.84	3
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:26	9.14	8.16	33.31	18.79	3.97	2.5
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.2	12:26	9.01	8.16	33.33	18.82	3.8	2.5
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.2	12:26	9.13	8.21	33.21	18.98	3.3	2.5
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Bottom	5.4	12:25	9.12	8.17	33.32	18.95	3.21	2.5
WSR36	20220210	Cloudy	Moderate	Mid-Flood	Bottom	5.4	12:25	9.01	8.18	33.37	18.92	2.85	2.5

WSR37	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:41	9.27	8.34	34.02	19.55	2.9	2.5
WSR37	20220210	Cloudy	Moderate	Mid-Flood	Surface	1	12:41	9.44	8.36	34.05	19.49	2.54	3
WSR37	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.85	12:40	9.34	8.4	34.09	19.51	2.79	3
WSR37	20220210	Cloudy	Moderate	Mid-Flood	Middle	3.85	12:40	9.28	8.4	33.99	19.49	2.44	3
WSR37	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.7	12:39	9.23	8.33	34.02	19.48	2.24	2.5
WSR37	20220210	Cloudy	Moderate	Mid-Flood	Bottom	6.7	12:39	9.29	8.35	34.03	19.54	1.88	2.5
CE	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	17:22	8.4	8.19	33.04	18.7	4.55	3
CE	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	17:22	8.49	8.24	33.1	18.61	4.85	2.5
CE	20220210	Cloudy	Moderate	Mid-Ebb	Middle	10.15	17:21	8.33	8.22	33.02	18.74	5.32	3
CE	20220210	Cloudy	Moderate	Mid-Ebb	Middle	10.15	17:21	8.38	8.21	33.06	18.6	5.51	3
CE	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	19.3	17:20	8.48	8.27	33.03	18.7	5.25	3
CE	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	19.3	17:20	8.49	8.26	33.05	18.73	5.13	3
CF	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:52	8.38	8.27	33.16	19.06	4.33	2.5
CF	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:52	8.42	8.21	33.2	19.07	4.92	4
CF	20220210	Cloudy	Moderate	Mid-Ebb	Middle	10.3	19:51	8.41	8.21	33.2	19.12	5.03	4
CF	20220210	Cloudy	Moderate	Mid-Ebb	Middle	10.3	19:51	8.35	8.21	33.11	19.05	4.48	2.5
CF	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	19.6	19:50	8.45	8.24	33.12	19.03	4.27	2.5
CF	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	19.6	19:50	8.46	8.24	33.24	19.06	4.24	3
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:30	8.43	8.18	33.13	19.22	4.17	4
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:30	8.47	8.2	33.14	19.24	3.83	2.5
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.75	19:29	8.35	8.18	33.17	19.13	4.12	4
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.75	19:29	8.35	8.19	33.07	19.17	3.8	3
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	8.5	19:28	8.48	8.26	33.06	19.15	3.43	4
WSR01	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	8.5	19:28	8.42	8.19	33.01	19.21	3.16	2.5
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:12	8.39	8.28	33.05	18.89	2.54	3
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	19:12	8.29	8.18	33.02	18.91	2.34	2.5
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.5	19:11	8.47	8.24	33.16	18.84	2.88	2.5
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.5	19:11	8.48	8.22	33.13	18.91	2.42	2.5
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	8	19:10	8.34	8.23	33.17	18.87	2.48	2.5
WSR02	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	8	19:10	8.49	8.2	33.1	18.78	2.45	2.5
WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:57	8.38	8.27	33.14	18.72	3.29	7
WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:57	8.43	8.22	33.18	18.73	3.56	7
WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.25	18:56	8.34	8.2	33.12	18.76	3.51	2.5

WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.25	18:56	8.32	8.22	33.16	18.64	3.5	3
WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	18:55	8.3	8.23	33.1	18.61	3.06	11
WSR03	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	18:55	8.47	8.19	33.15	18.69	3.17	11
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:44	8.41	8.18	33.04	19.05	3.41	2.5
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:44	8.37	8.22	33.12	19.11	3.58	4
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.75	18:43	8.47	8.2	33.2	19.18	2.87	2.5
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.75	18:43	8.43	8.22	33.2	19.01	3.21	2.5
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	18:42	8.43	8.2	33.18	19.16	2.8	4
WSR04	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	18:42	8.41	8.25	33.04	19.17	2.52	3
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	17:42	8.51	8.26	33.13	19.31	3.96	2.5
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	17:42	8.49	8.2	33.08	19.22	4	2.5
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Middle	7.8	17:41	8.35	8.24	33.24	19.21	3.5	2.5
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Middle	7.8	17:41	8.46	8.2	33.21	19.34	3.64	3
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	14.6	17:40	8.45	8.28	33.05	19.22	2.9	7
WSR16	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	14.6	17:40	8.51	8.25	33.18	19.33	3.46	7
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:30	8.47	8.22	33.23	18.54	3.2	3
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:30	8.31	8.24	33.02	18.55	3.36	4
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.65	18:29	8.34	8.25	33.11	18.51	3.36	7
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.65	18:29	8.47	8.27	33.2	18.43	3.21	7
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	18:28	8.36	8.21	33.17	18.48	3.31	5
WSR33	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	18:28	8.44	8.28	33.19	18.42	2.92	9
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:16	8.35	8.27	33.11	18.54	3.55	8
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:16	8.4	8.23	33.18	18.65	3.14	б
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.2	18:16	8.41	8.22	33.24	18.53	3.55	4
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Middle	3.2	18:16	8.48	8.27	33.06	18.61	3.12	5
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	5.4	18:15	8.39	8.18	33.21	18.52	3.08	2.5
WSR36	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	5.4	18:15	8.29	8.18	33.13	18.59	3.02	3
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:02	8.33	8.24	33.03	18.47	4.24	7
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Surface	1	18:02	8.41	8.25	33.23	18.58	4.31	7
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.2	18:01	8.31	8.22	33.13	18.51	4.08	4
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Middle	4.2	18:01	8.36	8.21	33.13	18.47	4.11	4
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	18:00	8.35	8.24	33.02	18.63	3.45	4
WSR37	20220210	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	18:00	8.32	8.26	33.22	18.52	3.5	б

CE	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:51	9.04	8.31	32.5	19.27	3.66	4
CE	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:51	9.14	8.35	32.53	19.29	3.18	3
CE	20220212	Cloudy	Moderate	Mid-Flood	Middle	11.6	10:50	9.47	8.33	32.56	19.21	2.95	4
CE	20220212	Cloudy	Moderate	Mid-Flood	Middle	11.6	10:50	9.37	8.33	32.56	19.23	3.27	4
CE	20220212	Cloudy	Moderate	Mid-Flood	Bottom	22.2	10:49	9.24	8.33	32.56	19.14	3.61	5
CE	20220212	Cloudy	Moderate	Mid-Flood	Bottom	22.2	10:49	9.11	8.33	32.51	19.14	3.52	7
CF	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:14	9.74	8.16	32.71	19.51	3.98	5
CF	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:14	9.69	8.15	32.76	19.53	4.17	7
CF	20220212	Cloudy	Moderate	Mid-Flood	Middle	10.55	8:13	9.6	8.16	32.68	19.51	3.84	9
CF	20220212	Cloudy	Moderate	Mid-Flood	Middle	10.55	8:13	9.43	8.18	32.78	19.39	4.03	6
CF	20220212	Cloudy	Moderate	Mid-Flood	Bottom	20.1	8:12	9.48	8.18	32.69	19.4	3.96	6
CF	20220212	Cloudy	Moderate	Mid-Flood	Bottom	20.1	8:12	9.54	8.13	32.77	19.38	4.12	9
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:36	8.8	8.18	33.23	19.23	3.03	6
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:36	8.96	8.18	33.23	19.18	3.38	8
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.7	8:35	8.73	8.18	33.19	19.27	2.58	6
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.7	8:35	9.11	8.18	33.2	19.25	2.51	7
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Bottom	8.4	8:34	8.92	8.15	33.24	19.33	2.76	9
WSR01	20220212	Cloudy	Moderate	Mid-Flood	Bottom	8.4	8:34	8.69	8.18	33.15	19.17	2.45	6
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:53	8.71	8.22	32.52	19.32	2.49	8
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	8:53	8.69	8.25	32.52	19.35	2.3	8
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.65	8:52	8.65	8.26	32.52	19.42	2.13	2.5
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.65	8:52	9.06	8.22	32.53	19.24	1.96	2.5
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Bottom	8.3	8:51	8.85	8.26	32.59	19.39	2.27	5
WSR02	20220212	Cloudy	Moderate	Mid-Flood	Bottom	8.3	8:51	8.86	8.24	32.49	19.32	2.15	7
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	9.74	8.4	32.81	19.67	2.99	2.5
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	9.54	8.35	32.77	19.63	2.7	4
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.2	9:05	9.39	8.36	32.77	19.69	2.82	3
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.2	9:05	9.47	8.37	32.74	19.58	2.98	5
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Bottom	7.4	9:04	9.34	8.38	32.74	19.55	2.99	3
WSR03	20220212	Cloudy	Moderate	Mid-Flood	Bottom	7.4	9:04	9.36	8.37	32.79	19.65	2.98	2.5
WSR04	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:19	8.67	8.19	32.98	19.51	3.41	2.5
WSR04	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:19	8.78	8.18	32.95	19.43	2.93	4
WSR04	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.5	9:18	8.59	8.15	32.93	19.39	3.09	3
		2											

WSR04	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.5	9:18	8.66	8.18	32.93	19.47	2.67	3
WSR04	20220212	Cloudy	Moderate	Mid-Flood	Bottom	6	9:17	8.56	8.19	32.92	19.4	2.48	6
WSR04	20220212	Cloudy	Moderate	Mid-Flood	Bottom	6	9:17	8.56	8.15	32.98	19.36	2.39	3
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:27	8.89	8.28	32.86	18.94	3.03	3
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:27	8.42	8.27	32.92	18.84	2.59	3
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Middle	8.35	10:26	8.86	8.3	32.86	18.8	2.26	2.5
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Middle	8.35	10:26	8.4	8.3	32.86	18.88	2.35	2.5
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Bottom	15.7	10:25	8.72	8.32	32.85	18.78	2.24	3
WSR16	20220212	Cloudy	Moderate	Mid-Flood	Bottom	15.7	10:25	8.76	8.28	32.88	18.84	2.06	3
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:35	8.77	8.2	32.53	19.62	2.94	5
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:35	8.95	8.18	32.63	19.49	2.98	6
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.5	9:34	8.61	8.21	32.55	19.65	2.91	4
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.5	9:34	9.02	8.2	32.58	19.58	3.2	4
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Bottom	6	9:33	9.03	8.18	32.53	19.62	3.12	5
WSR33	20220212	Cloudy	Moderate	Mid-Flood	Bottom	6	9:33	8.99	8.2	32.55	19.52	2.77	4
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:49	8.59	8.36	33.21	18.81	3.8	4
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	9:49	8.68	8.37	33.11	18.91	3.78	5
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.15	9:49	9.02	8.39	33.14	18.94	3.22	4
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Middle	3.15	9:49	9.01	8.38	33.19	18.9	3.44	3
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Bottom	5.3	9:48	8.71	8.35	33.2	18.89	3.35	4
WSR36	20220212	Cloudy	Moderate	Mid-Flood	Bottom	5.3	9:48	8.65	8.34	33.15	18.77	3.3	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:05	9.46	8.43	32.44	19.04	3.74	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Surface	1	10:05	9.57	8.39	32.5	18.93	3.24	3
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.4	10:04	9.55	8.4	32.45	18.96	3.34	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Middle	4.4	10:04	9.39	8.4	32.42	18.87	3.24	5
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Bottom	7.8	10:03	9.6	8.41	32.41	19	3.05	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Flood	Bottom	7.8	10:03	9.85	8.4	32.47	18.93	2.8	5
CE	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	18:19	9.17	8.25	32.96	19.07	4.32	10
CE	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	18:19	9.06	8.2	32.87	18.85	4.34	11
CE	20220212	Cloudy	Moderate	Mid-Ebb	Middle	10.45	18:18	9.19	8.25	32.93	18.89	4.47	11
CE	20220212	Cloudy	Moderate	Mid-Ebb	Middle	10.45	18:18	9.16	8.21	32.95	18.97	4.59	11
CE	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	19.9	18:17	9.36	8.23	32.87	18.89	4.55	9
CE	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	19.9	18:17	9.04	8.21	32.83	18.90	4.67	10
		-											

CF	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:46	8.93	8.4	33.10	19.20	3.23	5
CF	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:46	8.94	8.4	33.12	19.12	3.42	4
CF	20220212	Cloudy	Moderate	Mid-Ebb	Middle	10.75	20:45	9.14	8.41	33.05	19.30	3.91	2.5
CF	20220212	Cloudy	Moderate	Mid-Ebb	Middle	10.75	20:45	8.9	8.42	33.11	19.14	3.61	2.5
CF	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	20.5	20:44	9.27	8.4	33.04	19.26	3.66	2.5
CF	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	20.5	20:44	9.02	8.44	33.05	19.24	3.38	3
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:23	9.05	8.27	33.53	19.16	3.91	4
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:23	9.24	8.27	33.58	19.16	3.8	2.5
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.5	20:22	9.17	8.23	33.62	18.96	3.16	11
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.5	20:22	9.12	8.29	33.53	19.02	2.85	10
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	8	20:21	9	8.29	33.59	19.00	2.81	6
WSR01	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	8	20:21	9.14	8.23	33.47	19.13	2.72	4
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:06	8.78	8.45	33.37	18.92	2.39	10
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	20:06	8.97	8.43	33.26	19.01	2.67	10
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.85	20:05	9.03	8.43	33.19	18.93	2.67	18
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.85	20:05	8.77	8.44	33.29	19.09	2.48	20
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	8.7	20:04	9.06	8.47	33.21	19.00	2.2	23
WSR02	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	8.7	20:04	8.8	8.45	33.19	19.00	2.44	21
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:52	9.15	8.21	33.65	19.16	2.96	21
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:52	9.25	8.15	33.65	19.17	2.74	19
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.2	19:51	8.99	8.15	33.61	18.95	2.65	9
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.2	19:51	9.08	8.23	33.73	19.01	3.03	10
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	19:50	9.13	8.19	33.66	19.11	2.37	10
WSR03	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	19:50	9.33	8.19	33.70	19.12	2.57	5
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:41	8.7	8.18	33.64	19.20	3.97	4
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:41	9.04	8.23	33.69	19.26	3.86	5
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.5	19:40	8.86	8.15	33.72	19.15	3.55	5
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.5	19:40	8.85	8.23	33.65	19.33	3.08	5
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	б	19:39	8.75	8.22	33.61	19.25	3.3	2.5
WSR04	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	б	19:39	8.71	8.18	33.58	19.15	2.85	2.5
WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	18:40	9.08	8.22	33.63	18.84	3.48	3
WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	18:40	8.95	8.19	33.65	18.88	3.16	2.5
WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Middle	7.9	18:39	8.97	8.19	33.66	18.89	3.04	2.5

WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Middle	7.9	18:39	9.17	8.18	33.67	18.74	3.19	4
WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	14.8	18:38	9.05	8.17	33.64	18.72	2.72	9
WSR16	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	14.8	18:38	9.15	8.17	33.61	18.82	2.44	13
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:27	8.8	8.29	33.37	19.38	3.19	6
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:27	8.73	8.35	33.47	19.34	3.41	3
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.6	19:26	8.81	8.31	33.45	19.31	2.86	2.5
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.6	19:26	8.79	8.29	33.34	19.28	3.29	2.5
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	19:25	8.64	8.31	33.39	19.35	3.2	2.5
WSR33	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	19:25	8.48	8.32	33.37	19.25	2.84	2.5
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:12	9.66	8.18	33.66	19.52	3.45	8
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:12	9.3	8.15	33.83	19.33	3.69	9
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.65	19:12	9.57	8.16	33.70	19.50	3.42	10
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Middle	3.65	19:12	9.36	8.14	33.77	19.51	3.58	11
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	19:11	9.33	8.18	33.74	19.47	3.44	2.5
WSR36	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	19:11	9.43	8.21	33.77	19.47	3.39	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:00	9.44	8.3	32.67	18.71	3.1	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Surface	1	19:00	9.27	8.34	32.64	18.69	3.06	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.2	18:59	9.42	8.29	32.65	18.81	3.01	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Middle	4.2	18:59	9.48	8.34	32.64	18.65	2.9	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	18:58	9.38	8.33	32.73	18.66	3.03	2.5
WSR37	20220212	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	18:58	9.44	8.33	32.68	18.66	2.62	2.5
CE	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:46	8.7	8.2	31.56	19.4	3	2.5
CE	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:46	8.65	8.22	31.71	19.39	3.2	2.5
CE	20220215	Cloudy	Moderate	Mid-Flood	Middle	11.55	17:45	8.65	8.22	31.59	19.46	3.54	3
CE	20220215	Cloudy	Moderate	Mid-Flood	Middle	11.55	17:45	8.56	8.17	31.69	19.44	3.64	5
CE	20220215	Cloudy	Moderate	Mid-Flood	Bottom	22.1	17:44	8.52	8.26	31.66	19.4	3.96	2.5
CE	20220215	Cloudy	Moderate	Mid-Flood	Bottom	22.1	17:44	8.63	8.22	31.74	19.43	3.52	3
CF	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:06	8.81	8.22	32.15	19.35	4.08	4
CF	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:06	8.87	8.24	32.1	19.33	4.09	5
CF	20220215	Cloudy	Moderate	Mid-Flood	Middle	10.05	15:05	8.73	8.22	32.22	19.27	4.8	3
CF	20220215	Cloudy	Moderate	Mid-Flood	Middle	10.05	15:05	8.82	8.26	32.15	19.37	4.21	2.5
CF	20220215	Cloudy	Moderate	Mid-Flood	Bottom	19.1	15:04	8.74	8.24	32.07	19.28	3.99	2.5
CF	20220215	Cloudy	Moderate	Mid-Flood	Bottom	19.1	15:04	8.73	8.21	32.04	19.23	4.12	3

WSR01	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:30	9.08	8.34	32.47	19.22	3.51	5
WSR01	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:30	9.07	8.28	32.27	19.23	3.32	4
WSR01	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.75	15:29	9.17	8.32	32.31	19.25	2.85	2.5
WSR01	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.75	15:29	9.06	8.34	32.35	19.26	3.22	2.5
WSR01	20220215	Cloudy	Moderate	Mid-Flood	Bottom	8.5	15:28	9.17	8.28	32.46	19.16	2.76	2.5
WSR01	20220215	Cloudy	Moderate	Mid-Flood	Bottom	8.5	15:28	9.19	8.3	32.37	19.25	2.47	2.5
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:49	8.69	8.43	32.45	19.67	1.89	2.5
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	15:49	8.74	8.41	32.35	19.65	2.16	3
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.7	15:48	8.71	8.43	32.47	19.57	1.88	2.5
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.7	15:48	8.68	8.42	32.45	19.58	2.15	3
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Bottom	8.4	15:47	8.62	8.4	32.4	19.62	2.24	3
WSR02	20220215	Cloudy	Moderate	Mid-Flood	Bottom	8.4	15:47	8.68	8.41	32.29	19.66	2.1	3
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:03	9.01	8.33	32.47	19.53	3.16	4
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:03	9.07	8.27	32.45	19.55	3.02	4
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.75	16:02	8.96	8.3	32.4	19.49	2.25	5
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.75	16:02	8.98	8.32	32.48	19.51	2.56	б
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.5	16:01	9.07	8.26	32.58	19.48	1.96	4
WSR03	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.5	16:01	8.99	8.31	32.46	19.49	2.14	5
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:16	8.71	8.36	31.83	19.82	2.18	9
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:16	8.57	8.4	31.87	19.86	2.11	7
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.55	16:15	8.64	8.41	31.94	19.75	2.07	5
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.55	16:15	8.67	8.38	31.94	19.81	2.4	4
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.1	16:14	8.67	8.35	31.93	19.88	2.15	6
WSR04	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.1	16:14	8.66	8.42	31.78	19.74	2.44	7
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:23	9.2	8.15	32.14	19.14	3.01	4
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:23	9.23	8.15	32.23	19.15	3.11	3
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Middle	8	17:22	9.35	8.22	32.22	19.16	2.62	3
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Middle	8	17:22	9.23	8.21	32.17	19.15	2.6	3
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Bottom	15	17:21	9.34	8.15	32.24	19.18	2.42	3
WSR16	20220215	Cloudy	Moderate	Mid-Flood	Bottom	15	17:21	9.29	8.22	32.19	19.15	2.64	3
WSR33	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:30	9.35	8.13	32.11	19.45	2.27	7
WSR33	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:30	9.39	8.09	32.06	19.33	2.61	7
WSR33	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.7	16:29	9.34	8.16	32.25	19.36	2.15	3

WSR33	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.7	16:29	9.44	8.1	32.07	19.43	2.06	3
WSR33	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.4	16:28	9.48	8.14	32.19	19.35	2.46	11
WSR33	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.4	16:28	9.47	8.09	32.08	19.44	2.1	13
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:44	9.57	8.33	32.52	19.13	2.85	6
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	16:44	9.75	8.26	32.58	19.11	2.78	6
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.85	16:44	9.61	8.35	32.57	19.11	2.31	15
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Middle	3.85	16:44	9.67	8.3	32.57	19.1	2.16	13
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.7	16:43	9.64	8.3	32.49	18.99	2.05	5
WSR36	20220215	Cloudy	Moderate	Mid-Flood	Bottom	6.7	16:43	9.71	8.3	32.52	18.98	2.38	5
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:00	9.08	8.39	31.82	19.36	2.92	4
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Surface	1	17:00	9.23	8.38	31.86	19.4	3.48	4
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.15	16:59	9.2	8.31	31.85	19.47	3.1	2.5
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Middle	4.15	16:59	9.07	8.33	31.71	19.38	3.2	3
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Bottom	7.3	16:58	9.11	8.39	31.86	19.41	2.64	2.5
WSR37	20220215	Cloudy	Moderate	Mid-Flood	Bottom	7.3	16:58	9.17	8.36	31.67	19.38	2.33	2.5
CE	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:11	8.83	8.28	33.06	19.67	4.29	4
CE	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:11	8.9	8.29	33.05	19.54	4.11	3
CE	20220215	Cloudy	Moderate	Mid-Ebb	Middle	10.65	10:10	8.89	8.32	33.14	19.64	4.25	7
CE	20220215	Cloudy	Moderate	Mid-Ebb	Middle	10.65	10:10	8.86	8.26	33.07	19.63	4.17	6
CE	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	20.3	10:09	8.86	8.29	33.12	19.65	4.51	9
CE	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	20.3	10:09	9	8.32	33.04	19.51	4.33	12
CF	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:43	9.47	8.17	32.14	19.06	3.23	11
CF	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:43	9.41	8.17	32.20	19.19	3.79	14
CF	20220215	Cloudy	Moderate	Mid-Ebb	Middle	9.7	12:42	9.47	8.14	32.16	19.11	3.81	12
CF	20220215	Cloudy	Moderate	Mid-Ebb	Middle	9.7	12:42	9.48	8.14	32.22	19.07	3.92	10
CF	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	18.4	12:41	9.36	8.14	32.13	19.06	3.75	20
CF	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	18.4	12:41	9.31	8.2	32.11	19.12	3.63	24
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:20	8.88	8.27	32.01	19.08	3.25	3
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:20	8.86	8.27	32.03	18.97	3.11	5
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.2	12:19	9	8.25	32.09	18.97	3.2	7
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.2	12:19	8.92	8.22	32.14	18.99	3.3	8
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	12:18	8.91	8.28	32.08	18.95	2.89	7
WSR01	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	12:18	9.04	8.25	32.10	19.09	2.94	6

WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:01	9.36	8.23	32.89	18.81	2.38	5
WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	12:01	9.29	8.23	32.98	18.83	2.12	4
WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.5	12:00	9.26	8.26	32.88	18.84	2.02	4
WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.5	12:00	9.27	8.27	32.97	18.82	1.89	3
WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	8	11:59	9.38	8.29	32.91	18.80	2.24	5
WSR02	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	8	11:59	9.31	8.28	32.93	18.96	2.19	5
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:46	8.78	8.22	32.49	19.08	3.12	5
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:46	8.66	8.25	32.43	19.09	2.88	7
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.2	11:45	8.64	8.22	32.47	19.17	2.6	4
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.2	11:45	8.63	8.22	32.47	19.12	3.05	4
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	11:44	8.79	8.22	32.53	19.16	2.51	5
WSR03	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	11:44	8.74	8.25	32.53	19.07	2.9	4
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:34	9.43	8.37	32.25	19.37	3.95	15
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:34	9.42	8.34	32.27	19.34	3.4	15
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.85	11:33	9.4	8.4	32.12	19.40	3.11	4
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.85	11:33	9.51	8.34	32.23	19.39	3.06	5
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	11:32	9.46	8.4	32.19	19.32	2.78	19
WSR04	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	11:32	9.51	8.39	32.27	19.42	3.16	22
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:33	8.5	8.36	32.92	19.47	3.89	3
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:33	8.44	8.35	32.96	19.51	3.45	5
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Middle	7.55	10:32	8.44	8.39	32.86	19.40	3.52	5
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Middle	7.55	10:32	8.38	8.36	32.96	19.49	3.13	4
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	14.1	10:31	8.51	8.39	32.92	19.38	2.69	3
WSR16	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	14.1	10:31	8.38	8.35	32.95	19.48	3.18	4
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:20	9.4	8.42	32.93	19.59	3.89	5
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:20	9.27	8.39	32.93	19.52	4.05	4
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.85	11:19	9.35	8.38	32.85	19.46	3.43	4
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.85	11:19	9.4	8.41	32.99	19.59	3.92	3
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	11:18	9.38	8.43	32.92	19.54	3.75	4
WSR33	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	11:18	9.39	8.43	32.89	19.55	3.88	5
WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:05	8.49	8.38	33.07	19.58	3.12	3
WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	11:05	8.58	8.36	32.97	19.51	2.96	4
WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.75	11:05	8.55	8.4	32.98	19.50	3.13	7

WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Middle	3.75	11:05	8.5	8.38	32.97	19.60	2.77	8
WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	11:04	8.48	8.36	33.02	19.62	2.08	5
WSR36	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	11:04	8.63	8.34	33.03	19.49	2.11	4
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:53	8.61	8.22	32.35	18.91	2.6	4
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Surface	1	10:53	8.74	8.24	32.39	18.91	2.48	6
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.35	10:52	8.59	8.2	32.41	18.78	2.22	3
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Middle	4.35	10:52	8.75	8.24	32.42	18.77	2.32	4
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.7	10:51	8.61	8.26	32.43	18.82	2.28	4
WSR37	20220215	Cloudy	Moderate	Mid-Ebb	Bottom	7.7	10:51	8.7	8.26	32.36	18.80	2.1	3
CE	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:57	9.52	8.27	33.37	19.08	3.14	7
CE	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:57	9.69	8.26	33.50	19.03	3.21	6
CE	20220217	Cloudy	Moderate	Mid-Flood	Middle	11.15	17:56	9.51	8.3	33.36	19.03	3.67	11
CE	20220217	Cloudy	Moderate	Mid-Flood	Middle	11.15	17:56	9.48	8.27	33.46	19.04	3.31	10
CE	20220217	Cloudy	Moderate	Mid-Flood	Bottom	21.3	17:55	9.58	8.31	33.33	19.08	3.63	6
CE	20220217	Cloudy	Moderate	Mid-Flood	Bottom	21.3	17:55	9.51	8.3	33.48	19.01	3.38	7
CF	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	15:22	9.49	8.21	33.95	18.81	3.8	5
CF	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	15:22	9.62	8.18	34.04	18.81	3.93	6
CF	20220217	Cloudy	Moderate	Mid-Flood	Middle	10.75	15:21	9.62	8.2	34.09	18.88	4.21	2.5
CF	20220217	Cloudy	Moderate	Mid-Flood	Middle	10.75	15:21	9.55	8.17	34.09	18.82	4.18	2.5
CF	20220217	Cloudy	Moderate	Mid-Flood	Bottom	20.5	15:20	9.48	8.16	34.14	18.85	3.97	6
CF	20220217	Cloudy	Moderate	Mid-Flood	Bottom	20.5	15:20	9.64	8.15	34.09	18.88	4.15	7
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	15:43	9.48	8.29	33.29	19.04	2.44	10
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	15:43	9.36	8.29	33.22	19.03	2.64	10
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.7	15:42	9.44	8.32	33.12	19.06	2.45	6
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.7	15:42	9.44	8.31	33.30	19.04	2.86	6
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Bottom	8.4	15:41	9.49	8.33	33.11	19.02	2.31	6
WSR01	20220217	Cloudy	Moderate	Mid-Flood	Bottom	8.4	15:41	9.39	8.28	33.21	19.06	2.02	6
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:02	9.03	8.39	33.93	18.43	2.39	7
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:02	9.05	8.37	33.96	18.49	2.16	5
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.9	16:01	8.89	8.4	33.87	18.50	2.22	20
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.9	16:01	8.99	8.4	33.88	18.44	2.02	20
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Bottom	8.8	16:00	9.03	8.44	33.95	18.46	2.09	19
WSR02	20220217	Cloudy	Moderate	Mid-Flood	Bottom	8.8	16:00	8.93	8.42	33.95	18.48	1.79	18

WSR03	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:16	8.94	8.26	34.41	19.72	2.71	16
WSR03	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:16	8.96	8.26	34.28	19.75	2.9	17
WSR03	20220217	Cloudy	Moderate	Mid-Flood	Middle	4	16:15	8.85	8.23	34.32	19.85	2.68	6
WSR03	20220217	Cloudy	Moderate	Mid-Flood	Middle	4	16:15	8.71	8.26	34.37	19.87	2.37	6
WSR03	20220217	Cloudy	Moderate	Mid-Flood	Bottom	7	16:14	8.78	8.28	34.32	18.89	2.85	18
WSR03	20220217	Cloudy	Moderate	Mid-Flood	Bottom	7	16:14	8.91	8.24	34.36	19.87	2.82	19
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:30	9.58	8.41	34.40	18.89	3.15	19
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:30	9.56	8.39	34.30	18.90	3.18	16
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.65	16:29	9.4	8.44	34.27	18.95	2.47	12
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.65	16:29	9.59	8.4	34.39	18.89	2.94	14
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Bottom	6.3	16:28	9.5	8.44	34.26	18.94	2.65	19
WSR04	20220217	Cloudy	Moderate	Mid-Flood	Bottom	6.3	16:28	9.44	8.4	34.28	18.94	2.52	20
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:33	8.88	8.17	34.21	18.93	3.39	19
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:33	8.78	8.16	34.14	18.90	3.29	19
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Middle	8.45	17:32	8.77	8.22	34.19	18.88	3.01	22
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Middle	8.45	17:32	8.91	8.21	34.03	18.91	3.03	23
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Bottom	15.9	17:31	8.88	8.2	34.01	18.90	2.72	5
WSR16	20220217	Cloudy	Moderate	Mid-Flood	Bottom	15.9	17:31	8.78	8.21	34.14	18.93	2.55	7
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:44	8.73	8.48	33.90	18.99	3.01	11
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:44	8.76	8.47	33.78	18.97	3.27	10
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.8	16:43	8.76	8.49	33.84	19.03	2.81	9
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.8	16:43	8.68	8.45	33.91	18.98	3.24	10
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Bottom	6.6	16:42	8.73	8.46	33.87	18.98	2.31	11
WSR33	20220217	Cloudy	Moderate	Mid-Flood	Bottom	6.6	16:42	8.61	8.45	33.86	18.99	2.6	11
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:56	9.07	8.41	34.38	19.05	2.22	6
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	16:56	8.9	8.43	34.33	19.07	2.13	7
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.2	16:56	9.01	8.39	34.25	19.07	2.52	5
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Middle	3.2	16:56	9.1	8.37	34.42	19.07	2.6	6
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Bottom	5.4	16:55	9.15	8.37	34.27	19.03	2.19	6
WSR36	20220217	Cloudy	Moderate	Mid-Flood	Bottom	5.4	16:55	8.98	8.4	34.48	19.07	2.08	6
WSR37	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:11	9.61	8.41	33.88	18.76	2.5	9
WSR37	20220217	Cloudy	Moderate	Mid-Flood	Surface	1	17:11	9.62	8.43	33.96	18.74	2.16	10
WSR37	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.45	17:10	9.56	8.43	34.04	18.80	2.27	11

WSR37	20220217	Cloudy	Moderate	Mid-Flood	Middle	4.45	17:10	9.57	8.43	33.90	18.79	2.2	13	
WSR37	20220217	Cloudy	Moderate	Mid-Flood	Bottom	7.9	17:09	9.42	8.41	33.93	18.77	1.84	2.5	
WSR37	20220217	Cloudy	Moderate	Mid-Flood	Bottom	7.9	17:09	9.42	8.39	34.02	18.79	2.06	2.5	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:13	9.52	8.37	34.01	18.59	4.21	20	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:13	9.6	8.37	33.98	18.65	3.88	20	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Middle	11.45	11:12	9.53	8.35	33.91	18.63	3.92	12	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Middle	11.45	11:12	9.65	8.35	33.98	18.67	3.87	14	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	21.9	11:11	9.53	8.31	33.95	18.63	4.01	11	
CE	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	21.9	11:11	9.51	8.36	33.94	18.6	4.14	13	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:47	9.64	8.38	33.45	18.95	2.86	13	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:47	9.68	8.42	33.52	18.95	3.16	10	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Middle	10	13:46	9.55	8.44	33.44	18.96	3.6	16	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Middle	10	13:46	9.55	8.38	33.47	18.95	3.3	17	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	19	13:45	9.58	8.4	33.54	18.91	3.57	25	
CF	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	19	13:45	9.67	8.41	33.5	18.88	3.55	27	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:24	9.04	8.32	34.19	18.86	2.57	15	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:24	9.01	8.3	34.15	18.89	2.78	13	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.35	13:23	9.08	8.33	34.17	18.88	2.08	18	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.35	13:23	8.99	8.35	34.17	18.83	2.13	19	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.7	13:22	9.14	8.3	34.11	18.81	2.29	19	
WSR01	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.7	13:22	9.15	8.35	34.16	18.93	2.06	18	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:06	9.01	8.43	33.99	18.74	2.14	20	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	13:06	8.88	8.44	34.02	18.79	1.99	21	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.7	13:05	8.88	8.38	33.97	18.76	2.13	15	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.7	13:05	8.94	8.43	33.96	18.77	2.22	18	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	13:04	8.83	8.43	34	18.87	2.47	23	
WSR02	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	13:04	8.93	8.4	33.98	18.83	2.3	22	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:50	8.95	8.49	33.24	18.66	2.8	20	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:50	9.02	8.46	33.19	18.68	3.03	18	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.25	12:49	9.02	8.5	33.24	18.7	2.52	19	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.25	12:49	9.04	8.51	33.24	18.63	2.21	16	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	12:48	9.02	8.53	33.22	18.62	2.19	19	
WSR03	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	12:48	9.01	8.46	33.13	18.74	2.41	19	
P. Contraction of the second se		-												
WSR04 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:37 9.45 8.35 33.88 18.88 3.12 19 WSR04 2022017 Cloudy Moderate Mid-Ebb Midel 3.4 12:36 9.46 8.34 33.91 18.88 3.12 19 WSR04 2022017 Cloudy Moderate Mid-Ebb Midel 3.4 12:36 9.49 8.36 33.89 18.71 2.1 19 WSR04 2022017 Cloudy Moderate Mid-Ebb Striface 1 11:35 8.84 8.37 34.15 18.71 3.85 20 WSR16 2022017 Cloudy Moderate Mid-Ebb Striface 1 11:35 8.84 8.21 34.07 18.71 3.57 2.1 WSR16 2022017 Cloudy Moderate Mid-Ebb Striface 1 11:33 8.91 8.41 34.20 18.77 2.76 10 <														
---	-------	----------	--------	----------	-----------	---------	-------	-------	------	------	-------	-------	------	----
WSR04 20220217 Cloudy Moderate Mid-Ebb Middle 3.4 12:36 9.46 8.38 33.88 18.71 2.56 20 WSR04 2022017 Cloudy Moderate Mid-Ebb Bitdle 3.4 12:35 9.43 8.33 33.94 18.71 2.1 19 WSR04 2022017 Cloudy Moderate Mid-Ebb Bottom 5.8 12:35 9.43 8.33 33.94 18.71 2.12 20 WSR16 2022017 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.84 8.27 34.15 18.71 3.21 21 WSR16 2022017 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.26 34.07 18.7 3.21 21 WSR16 2022017 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.26 34.19 18.77 2.76 10	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:37	9.45	8.35	33.88	18.89	3.12	19
WSR04 20220217 Cloudy Moderate Mid-Ebb Midelle 3.4 12:36 9.49 8.36 33.89 18.9 2.61 19 WSR04 20220217 Cloudy Moderate Mid-Ebb Bottom 5.8 12:35 9.45 8.33 33.94 18.71 2.1 19 WSR04 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.84 8.27 34.15 18.71 3.85 20 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:34 8.9 8.29 34.07 18.71 3.21 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.23 34.10 18.79 2.94 13 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 4.23 18.77 2.76 10	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:37	9.63	8.34	33.91	18.88	3.12	19
WSR04 20220217 Cloudy Moderate Mid-Ebb Bottom 5.8 12:35 9.43 8.33 33.94 18.71 2.1 19 WSR16 20220217 Cloudy Moderate Mid-Ebb Sottine 5.8 12:35 8.44 33.91 18.71 3.85 202 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.84 8.27 34.07 18.68 3.61 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Midelb 8.2 11:34 8.92 8.26 34.07 18.71 3.21 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.28 34.19 18.50 2.94 13 WSR16 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.24 18.65 2.72 5	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.4	12:36	9.46	8.38	33.88	18.71	2.56	20
WSR04 2022017 Cloudy Moderate Mid-Ebb Bottom 5.8 12:35 9.55 8.4 33.91 18.71 2.12 20 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.84 8.27 34.15 18.71 3.85 20 WSR16 20220217 Cloudy Moderate Mid-Ebb Midle 8.2 11:34 8.92 8.26 34.07 18.67 3.57 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.81 8.26 34.19 18.59 2.94 13 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.23 18.77 2.76 10 WSR33 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.24 18.69 2.36 7	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.4	12:36	9.49	8.36	33.89	18.9	2.61	19
WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.84 8.27 34.15 18.71 3.85 20 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.88 8.31 34.07 18.68 3.61 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Midle 8.2 11:34 8.92 8.26 34.07 18.71 3.57 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.26 34.14 18.66 2.91 14 WSR33 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.2 18.65 2.72 5 WSR33 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.21 18.65 2.72 5	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	5.8	12:35	9.43	8.33	33.94	18.71	2.1	19
WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 11:35 8.88 8.31 34.07 18.68 3.61 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Middle 8.2 11:34 8.92 8.26 34.07 18.71 3.21 21 WSR16 2022017 Cloudy Moderate Mid-Ebb Middle 8.2 11:33 8.91 8.26 34.19 18.59 2.94 13 WSR16 2022017 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.28 34.14 18.66 2.91 14 WSR33 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.24 18.65 2.72 5 WSR33 2022017 Cloudy Moderate Mid-Ebb Midle 3.6 12:21 9.2 8.37 34.23 18.64 2.55 17 </td <td>WSR04</td> <td>20220217</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Bottom</td> <td>5.8</td> <td>12:35</td> <td>9.55</td> <td>8.4</td> <td>33.91</td> <td>18.71</td> <td>2.12</td> <td>20</td>	WSR04	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	5.8	12:35	9.55	8.4	33.91	18.71	2.12	20
WSR16 20220217 Cloudy Moderate Mid-Ebb Middle 8.2 11:34 8.92 8.26 34.07 18.71 3.21 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.81 8.26 34.07 18.7 3.57 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.81 8.26 34.19 18.59 2.94 13 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.23 18.77 2.76 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Midle 3.6 12:22 9.19 8.4 34.24 18.65 2.72 5 WSR33 20220217 Cloudy Moderate Mid-Ebb Sufface 1 12:10 9.24 8.41 34.19 18.77 2.76 18	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:35	8.84	8.27	34.15	18.71	3.85	20
WSR16 2022017 Cloudy Moderate Mid-Ebb Middle 8.2 11:34 8.9 8.29 34.07 18.7 3.57 21 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.81 8.26 34.19 18.59 2.94 13 WSR16 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.23 18.77 2.76 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.21 18.65 2.72 5 WSR33 20220217 Cloudy Moderate Mid-Ebb Midle 3.6 12:22 9.24 8.35 34.21 18.64 2.36 7 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 <td>WSR16</td> <td>20220217</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Surface</td> <td>1</td> <td>11:35</td> <td>8.88</td> <td>8.31</td> <td>34.07</td> <td>18.68</td> <td>3.61</td> <td>21</td>	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:35	8.88	8.31	34.07	18.68	3.61	21
WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.81 8.26 34.19 18.59 2.94 13 WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.28 34.14 18.66 2.91 14 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.13 8.41 34.23 18.77 2.76 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Midele 3.6 12:22 9.19 8.4 34.24 18.65 2.72 5 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Middle	8.2	11:34	8.92	8.26	34.07	18.71	3.21	21
WSR16 20220217 Cloudy Moderate Mid-Ebb Bottom 15.4 11:33 8.91 8.28 34.14 18.66 2.91 14 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.23 18.77 2.76 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.2 18.76 3.16 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Midle 3.6 12:22 9.19 8.4 34.21 18.64 2.55 17 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.2 8.41 34.19 18.77 2.76 18 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.14 8.44 33.62 18.77 2.76 8 </td <td>WSR16</td> <td>20220217</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Middle</td> <td>8.2</td> <td>11:34</td> <td>8.9</td> <td>8.29</td> <td>34.07</td> <td>18.7</td> <td>3.57</td> <td>21</td>	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Middle	8.2	11:34	8.9	8.29	34.07	18.7	3.57	21
WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.23 8.41 34.23 18.77 2.76 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.2 18.76 3.16 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Midelle 3.6 12:22 9.19 8.4 34.24 18.65 2.72 5 WSR33 20220217 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR33 20220217 Cloudy Moderate Mid-Ebb Sutface 1 12:10 9.2 8.41 34.19 18.77 2.76 18 WSR36 20220217 Cloudy Moderate Mid-Ebb Sutface 1 12:10 9.16 8.46 33.53 18.87 2.38 2.06 WSR36 20220217 Cloudy Moderate Mid-Ebb Sutface	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	15.4	11:33	8.81	8.26	34.19	18.59	2.94	13
WSR33 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:23 9.1 8.4 34.2 18.76 3.16 10 WSR33 20220217 Cloudy Moderate Mid-Ebb Middle 3.6 12:22 9.19 8.4 34.24 18.65 2.72 5 WSR33 20220217 Cloudy Moderate Mid-Ebb Middle 3.6 12:22 9.25 8.37 34.23 18.69 2.36 7 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.14 8.44 33.62 18.87 2.38 20	WSR16	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	15.4	11:33	8.91	8.28	34.14	18.66	2.91	14
WSR33 20220217 Cloudy Moderate Mid-Ebb Middle 3.6 12:22 9.19 8.4 34.24 18.65 2.72 5 WSR33 2022017 Cloudy Moderate Mid-Ebb Midle 3.6 12:22 9.25 8.37 34.23 18.69 2.36 7 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR33 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 8.98 8.47 33.56 18.75 2.76 8 WSR36 2022017 Cloudy Moderate Mid-Ebb Midle 3.15 12:10 9.14 8.44 33.57 18.87 2.38 20 WSR36 2022017 Cloudy Moderate Mid-Ebb Bottom 5.3	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:23	9.23	8.41	34.23	18.77	2.76	10
WSR33 20220217 Cloudy Moderate Middle 3.6 12:22 9.25 8.37 34.23 18.69 2.36 7 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR33 2022017 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.2 8.41 34.19 18.77 2.76 18 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 8.98 8.47 33.56 18.75 2.76 8 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.14 8.44 33.67 18.87 2.38 20 WSR36 2022017 Cloudy Moderate Mid-Ebb Bottom 5.3 12:09<	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:23	9.1	8.4	34.2	18.76	3.16	10
WSR33 20220217 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.24 8.35 34.21 18.64 2.55 17 WSR33 20220217 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.2 8.41 34.19 18.77 2.76 18 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.14 8.44 33.62 18.87 2.38 20 WSR36 20220217 Cloudy Moderate Mid-Ebb Midle 3.15 12:10 9.14 8.44 33.62 18.87 2.38 20 WSR36 20220217 Cloudy Moderate Mid-Ebb Bottom 5.3 12:09 9.04 8.44 33.57 18.75 2.16 11 WSR36 2022017 Cloudy Moderate Mid-Ebb Surface	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.6	12:22	9.19	8.4	34.24	18.65	2.72	5
WSR33 20220217 Cloudy Moderate Mid-Ebb Bottom 6.2 12:21 9.2 8.41 34.19 18.77 2.76 18 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 9.16 8.46 33.53 18.83 2.56 6 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface 1 12:10 8.98 8.47 33.56 18.75 2.76 8 WSR36 20220217 Cloudy Moderate Mid-Ebb Midle 3.15 12:10 9.14 8.44 33.62 18.87 2.38 20 WSR36 20220217 Cloudy Moderate Mid-Ebb Midle 3.15 12:10 9.1 8.46 33.6 18.76 2.27 25 WSR36 20220217 Cloudy Moderate Mid-Ebb Bottom 5.3 12:09 9.04 8.44 33.57 18.78 1.91 10 WSR36 20220217 Cloudy Moderate Mid-Ebb Surface	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.6	12:22	9.25	8.37	34.23	18.69	2.36	7
WSR3620220217CloudyModerateMid-EbbSurface112:109.168.4633.5318.832.566WSR3620220217CloudyModerateMid-EbbSurface112:108.988.4733.5618.752.768WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.148.4433.6218.872.3820WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.18.4633.618.762.2725WSR3620220217CloudyModerateMid-EbbBottom5.312:099.048.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.433.5818.752.1611WSR372022017CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR372022017CloudyModerateMid-EbbSurface111:579.518.2633.0618.832.926WSR372022017CloudyModerateMid-EbbMidle4.4511:569.498.2633.0618.832.926WSR372022017CloudyModerateMid-EbbBottom7.911:559.538.233.1218.892.65 <td>WSR33</td> <td>20220217</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Bottom</td> <td>6.2</td> <td>12:21</td> <td>9.24</td> <td>8.35</td> <td>34.21</td> <td>18.64</td> <td>2.55</td> <td>17</td>	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	12:21	9.24	8.35	34.21	18.64	2.55	17
WSR3620220217CloudyModerateMid-EbbSurface112:108.988.4733.5618.752.768WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.148.4433.6218.872.3820WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.148.4433.6218.872.2725WSR3620220217CloudyModerateMid-EbbBottom5.312:099.048.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.433.5818.752.1611WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.842	WSR33	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	12:21	9.2	8.41	34.19	18.77	2.76	18
WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.148.4433.6218.872.3820WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.18.4633.618.762.2725WSR3620220217CloudyModerateMid-EbbBottom5.312:099.048.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.433.5818.752.1611WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR372022017CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:10	9.16	8.46	33.53	18.83	2.56	6
WSR3620220217CloudyModerateMid-EbbMiddle3.1512:109.18.4633.618.762.2725WSR3620220217CloudyModerateMid-EbbBottom5.312:099.048.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.4433.5718.781.9110WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.498.2633.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.96	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	12:10	8.98	8.47	33.56	18.75	2.76	8
WSR3620220217CloudyModerateMid-EbbBottom5.312:099.048.4433.5718.781.9110WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.433.5818.752.1611WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0918.923.0513WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMidle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.15	12:10	9.14	8.44	33.62	18.87	2.38	20
WSR3620220217CloudyModerateMid-EbbBottom5.312:099.18.433.5818.752.1611WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0418.823.0513WSR3720220217CloudyModerateMid-EbbSurface111:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.96 </td <td>WSR36</td> <td>20220217</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Middle</td> <td>3.15</td> <td>12:10</td> <td>9.1</td> <td>8.46</td> <td>33.6</td> <td>18.76</td> <td>2.27</td> <td>25</td>	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Middle	3.15	12:10	9.1	8.46	33.6	18.76	2.27	25
WSR3720220217CloudyModerateMid-EbbSurface111:579.498.2633.0418.823.1811WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0918.923.0513WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.528.2632.8617.033.385CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	5.3	12:09	9.04	8.44	33.57	18.78	1.91	10
WSR3720220217CloudyModerateMid-EbbSurface111:579.518.2633.0918.923.0513WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.528.2632.8617.033.385CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR36	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	5.3	12:09	9.1	8.4	33.58	18.75	2.16	11
WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.498.2633.0618.832.926WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.528.232.8317.033.385CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:57	9.49	8.26	33.04	18.82	3.18	11
WSR3720220217CloudyModerateMid-EbbMiddle4.4511:569.438.2333.1218.892.658WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.528.232.8317.033.385CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Surface	1	11:57	9.51	8.26	33.09	18.92	3.05	13
WSR3720220217CloudyModerateMid-EbbBottom7.911:559.538.233.1418.962.412WSR3720220217CloudyModerateMid-EbbBottom7.911:559.578.2233.0518.942.2411CE20220219CloudyModerateMid-FloodSurface110:308.528.232.8317.033.385CE20220219CloudyModerateMid-FloodSurface110:308.568.2632.8617.192.963	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.45	11:56	9.49	8.26	33.06	18.83	2.92	6
WSR37 20220217 Cloudy Moderate Mid-Ebb Bottom 7.9 11:55 9.57 8.22 33.05 18.94 2.24 11 CE 20220219 Cloudy Moderate Mid-Flood Surface 1 10:30 8.52 8.2 32.83 17.03 3.38 5 CE 20220219 Cloudy Moderate Mid-Flood Surface 1 10:30 8.56 8.26 32.86 17.19 2.96 3	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Middle	4.45	11:56	9.43	8.23	33.12	18.89	2.65	8
CE 20220219 Cloudy Moderate Mid-Flood Surface 1 10:30 8.52 8.2 32.83 17.03 3.38 5 CE 20220219 Cloudy Moderate Mid-Flood Surface 1 10:30 8.56 8.26 32.83 17.03 3.38 5	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.9	11:55	9.53	8.2	33.14	18.96	2.4	12
CE 20220219 Cloudy Moderate Mid-Flood Surface 1 10:30 8.56 8.26 32.86 17.19 2.96 3	WSR37	20220217	Cloudy	Moderate	Mid-Ebb	Bottom	7.9	11:55	9.57	8.22	33.05	18.94	2.24	11
	CE	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	10:30	8.52	8.2	32.83	17.03	3.38	5
CE 20220219 Cloudy Moderate Mid-Flood Middle 11.05 10:29 8.44 8.21 32.84 17.12 3.77 3	CE	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	10:30	8.56	8.26	32.86	17.19	2.96	3
	CE	20220219	Cloudy	Moderate	Mid-Flood	Middle	11.05	10:29	8.44	8.21	32.84	17.12	3.77	3

CE	20220219	Cloudy	Moderate	Mid-Flood	Middle	11.05	10:29	8.4	8.29	32.82	17.15	3.21	5
CE	20220219	Cloudy	Moderate	Mid-Flood	Bottom	21.1	10:28	8.57	8.26	32.77	17.11	3.66	5
CE	20220219	Cloudy	Moderate	Mid-Flood	Bottom	21.1	10:28	8.56	8.29	32.92	17.18	3.67	4
CF	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	8.85	8.18	33.45	17.07	3.48	5
CF	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	8.66	8.17	33.35	17.08	3.65	4
CF	20220219	Cloudy	Moderate	Mid-Flood	Middle	9.55	8:01	8.8	8.22	33.31	17.11	3.8	5
CF	20220219	Cloudy	Moderate	Mid-Flood	Middle	9.55	8:01	8.71	8.1	33.30	17.03	3.55	4
CF	20220219	Cloudy	Moderate	Mid-Flood	Bottom	18.1	8:00	8.67	8.15	33.45	16.96	4.3	5
CF	20220219	Cloudy	Moderate	Mid-Flood	Bottom	18.1	8:00	8.79	8.1	33.43	16.96	3.91	4
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:25	8.36	8.02	33.09	16.94	3.24	3
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:25	8.36	8.11	33.15	16.93	2.96	5
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.3	8:24	8.2	8.14	33.15	16.88	3.12	4
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.3	8:24	8.31	8.04	33.11	16.84	2.69	5
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.6	8:23	8.24	8.07	33.17	16.95	2.37	4
WSR01	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.6	8:23	8.22	8.04	33.13	16.96	2.19	4
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:42	8.75	8.03	33.06	16.93	2.17	5
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:42	8.81	8.01	33.14	16.88	2.27	5
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.5	8:41	8.85	8.03	33.19	16.83	2.24	7
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.5	8:41	8.86	8.08	33.14	16.82	2.16	9
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Bottom	8	8:40	8.79	8.08	33.12	16.87	2.11	8
WSR02	20220219	Cloudy	Moderate	Mid-Flood	Bottom	8	8:40	8.75	7.99	33.17	16.89	1.98	8
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:54	8.17	8.16	33.23	17.05	2.62	6
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	8:54	8.17	8.15	33.10	17.04	2.51	7
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.2	8:53	8.12	8.19	33.07	17.02	2.9	4
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.2	8:53	8.12	8.16	33.08	17.09	2.59	4
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.4	8:52	8.08	8.23	33.23	17.01	1.98	8
WSR03	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.4	8:52	8.14	8.22	33.24	16.93	2.13	6
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	8.7	8.22	32.48	17.10	2.75	7
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	8.87	8.23	32.57	16.98	3.2	6
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.4	9:05	8.85	8.27	32.44	16.98	2.57	12
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.4	9:05	8.74	8.2	32.46	17.09	2.89	11
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Bottom	5.8	9:04	8.69	8.24	32.47	17.01	2.48	12
WSR04	20220219	Cloudy	Moderate	Mid-Flood	Bottom	5.8	9:04	8.82	8.21	32.46	17.06	2.59	13
		-											

WSR16	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	10:08	9.12	8.06	33.36	16.95	2.63	4
WSR16	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	10:08	8.92	8.11	33.35	17.10	2.89	4
WSR16	20220219	Cloudy	Moderate	Mid-Flood	Middle	8.5	10:07	8.92	8.16	33.42	16.95	2.7	7
WSR16	20220219	Cloudy	Moderate	Mid-Flood	Middle	8.5	10:07	9.08	8.06	33.32	16.94	2.35	9
WSR16	20220219	Cloudy	Moderate	Mid-Flood	Bottom	16	10:06	8.93	8.14	33.46	17.05	2.68	9
WSR16	20220219	Cloudy	Moderate	Mid-Flood	Bottom	16	10:06	8.9	8.05	33.30	17.04	2.64	8
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:20	9.15	8.08	32.98	17.07	2.38	5
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:20	9	8.19	33.07	17.13	2.06	5
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.85	9:19	9.07	8.15	33.06	17.20	2.46	3
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.85	9:19	9.06	8.16	33.01	17.11	2.37	3
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Bottom	6.7	9:18	9.11	8.19	33.17	17.06	2.24	9
WSR33	20220219	Cloudy	Moderate	Mid-Flood	Bottom	6.7	9:18	9.01	8.15	33.17	17.02	2.36	12
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:33	8.2	8	33.32	17.00	2.43	6
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:33	8.12	8.02	33.36	17.12	2.2	6
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.85	9:33	8.16	8.01	33.45	17.11	2.39	15
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Middle	3.85	9:33	8.24	8.06	33.47	17.04	2.72	17
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Bottom	6.7	9:32	8.22	8.02	33.39	17.16	2.48	5
WSR36	20220219	Cloudy	Moderate	Mid-Flood	Bottom	6.7	9:32	8.14	8.04	33.38	17.03	2.15	6
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:47	8.2	8.12	32.98	17.05	3.11	11
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Surface	1	9:47	8.22	8.05	32.97	17.18	3.41	8
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.25	9:46	8.13	8.12	32.76	17.17	2.66	11
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Middle	4.25	9:46	8.24	8.06	32.85	17.05	2.69	13
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.5	9:45	8.08	8.09	32.88	17.18	2.18	11
WSR37	20220219	Cloudy	Moderate	Mid-Flood	Bottom	7.5	9:45	8.24	8.03	32.82	17.05	2.13	11
CE	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	12:22	8.64	8.06	32.89	17.32	3.73	4
CE	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	12:22	8.78	8.05	33.03	17.38	3.46	4
CE	20220219	Cloudy	Moderate	Mid-Ebb	Middle	11.85	12:21	8.66	8.06	32.95	17.34	3.96	6
CE	20220219	Cloudy	Moderate	Mid-Ebb	Middle	11.85	12:21	8.76	8.11	32.88	17.41	4.16	6
CE	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	22.7	12:20	8.65	8.03	32.94	17.28	4.68	3
CE	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	22.7	12:20	8.77	8.15	33	17.3	4.33	4
CF	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:54	8.83	8.19	33.2	17.32	3.59	6
CF	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:54	8.83	8.12	33.2	17.38	3.52	7
CF	20220219	Cloudy	Moderate	Mid-Ebb	Middle	10.05	14:53	8.8	8.11	33.08	17.37	3.6	4

CF	20220219	Cloudy	Moderate	Mid-Ebb	Middle	10.05	14:53	8.88	8.21	33.29	17.25	3.45	6
CF	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	14:52	8.83	8.18	33.15	17.22	3.72	5
CF	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	14:52	8.83	8.15	33.25	17.28	3.49	6
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:32	8.95	8.04	33.52	17.13	3.69	5
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:32	8.91	8.03	33.61	17.02	3.79	4
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.6	14:31	9.04	8.06	33.61	17.1	3.31	4
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.6	14:31	8.93	7.98	33.52	17.04	3.49	4
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	8.2	14:30	9	8.1	33.58	17.14	2.76	5
WSR01	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	8.2	14:30	9	8.06	33.66	17.21	2.91	4
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:15	8.97	8.16	33.71	17.21	2.31	4
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:15	8.98	8.19	33.63	17.02	2.16	5
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.55	14:14	8.97	8.21	33.62	17.04	1.89	3
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.55	14:14	9.03	8.16	33.78	17.13	2.08	5
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	8.1	14:13	9.05	8.25	33.68	17.14	2.16	11
WSR02	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	8.1	14:13	8.93	8.21	33.67	17.21	2.19	8
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:00	8.56	8.04	32.69	17.41	3.1	5
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	14:00	8.58	8.02	32.76	17.27	3.28	6
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.75	13:59	8.55	8.05	32.66	17.29	3.17	4
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.75	13:59	8.61	8	32.73	17.26	2.86	3
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	13:58	8.46	8.11	32.86	17.37	2.33	5
WSR03	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	13:58	8.65	8.02	32.8	17.41	2.56	5
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:47	9.24	8.2	32.95	17.36	3.1	8
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:47	9.17	8.2	33.12	17.35	2.8	8
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.6	13:46	9.13	8.15	33.12	17.19	2.83	8
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.6	13:46	9.23	8.14	32.93	17.3	3.13	9
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	13:45	9.09	8.16	33.08	17.26	2.9	15
WSR04	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	13:45	9.16	8.19	33.02	17.38	2.97	16
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	12:44	8.8	8.15	33.4	17.13	2.84	6
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	12:44	8.75	8.2	33.45	16.95	2.94	5
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Middle	8.35	12:43	8.79	8.19	33.5	17.16	3.13	10
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Middle	8.35	12:43	8.85	8.21	33.57	16.96	2.62	8
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	15.7	12:42	8.76	8.24	33.46	17.01	2.68	5
WSR16	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	15.7	12:42	8.64	8.15	33.5	17.05	2.66	5

WSR33 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:31 8.71 8.16 33:29 17 3.32 4 WSR33 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:31 8.81 8.21 33:41 17.19 3.52 4 WSR33 2022019 Cloudy Moderate Mid-Ebb Midel 3.5 13:30 8.65 8.26 33:3 17.02 2.99 7 WSR33 2022019 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.7 8.23 33.25 17.02 2.87 5 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 32.74 17.12 2.88 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.67 8.24 32.79 17.13 2.58 7														
WSR33 2022019 Cloudy Moderate Mid-Ebb Middle 3.5 13:30 8.79 8.28 33.26 17.17 3.47 6 WSR33 2022019 Cloudy Moderate Mid-Ebb Bitule 3.5 13:30 8.77 8.23 33.25 17.02 2.97 5 WSR33 2022019 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.7 8.23 33.27 17.19 2.8 5 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 32.74 17.11 2.88 4 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.67 8.25 32.74 17.11 2.58 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Middle 3.25 13:16 8.66 8.24 32.79 17.13 2.58 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:31	8.71	8.16	33.29	17	3.32	4
WSR33 20220219 Cloudy Moderate Mid-Ebb Midelle 3.5 13:30 8.65 8.26 33.3 17.02 2.99 7 WSR33 20220219 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.73 8.23 33.27 17.19 2.8 5 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 33.27 17.19 2.88 4 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.32 32.74 17.12 2.88 4 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.66 8.23 32.74 17.12 2.23 10 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.67 17.03 3.63 17.02	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:31	8.81	8.21	33.41	17.19	3.52	4
WSR33 20220219 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.7 8.23 33.25 17.02 2.7 5 WSR33 20220219 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.83 8.29 33.27 17.19 2.8 5 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 32.74 17.12 2.88 4 WSR36 2022019 Cloudy Moderate Mid-Ebb Midelb 3.25 13:17 8.67 8.25 32.74 17.12 2.54 9 WSR36 2022019 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.66 8.21 3.79 17.13 2.58 7 WSR37 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.43 8.36 17.16 3.63 5 WSR37 </td <td>WSR33</td> <td>20220219</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Middle</td> <td>3.5</td> <td>13:30</td> <td>8.79</td> <td>8.28</td> <td>33.26</td> <td>17.17</td> <td>3.47</td> <td>6</td>	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.5	13:30	8.79	8.28	33.26	17.17	3.47	6
WSR33 20220219 Cloudy Moderate Mid-Ebb Bottom 6 13:29 8.83 8.29 33.27 17.19 2.8 5 WSR36 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 32.76 17.19 2.81 6 WSR36 20220219 Cloudy Moderate Mid-Ebb Midell 3.25 13:17 8.64 8.23 32.74 17.12 2.23 10 WSR36 20220219 Cloudy Moderate Mid-Ebb Midelle 3.25 13:17 8.66 8.22 32.74 17.12 2.23 10 WSR36 20220219 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.69 8.24 32.79 17.13 2.58 7 WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.56 17.10 3.63 5	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.5	13:30	8.65	8.26	33.3	17.02	2.99	7
WSR36 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.29 32.74 17.2 2.88 4 WSR36 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.32 32.76 17.19 2.81 6 WSR36 20220219 Cloudy Moderate Mid-Ebb Middle 3.25 13:17 8.67 8.23 32.74 17.1 2.23 10 WSR36 20220219 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.69 8.24 32.79 17.13 2.58 7 WSR37 20220219 Cloudy Moderate Mid-Ebb Strface 1 13:04 8.41 8.05 33.65 17.06 3.63 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Strface 1 13:04 8.31 8.05 33.56 17.11 3.13 6	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6	13:29	8.7	8.23	33.25	17.02	2.7	5
WSR36 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:17 8.64 8.32 32.76 17.19 2.81 6 WSR36 20220219 Cloudy Moderate Mid-Ebb Middle 3.25 13:17 8.67 8.25 32.74 17.11 2.54 9 WSR36 20220219 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.69 8.24 32.79 17.13 2.58 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Sottom 5.5 13:16 8.69 8.31 32.82 17.19 2.41 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.65 17.18 3.61 5 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.11 3.13 6 </td <td>WSR33</td> <td>20220219</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Bottom</td> <td>6</td> <td>13:29</td> <td>8.83</td> <td>8.29</td> <td>33.27</td> <td>17.19</td> <td>2.8</td> <td>5</td>	WSR33	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	6	13:29	8.83	8.29	33.27	17.19	2.8	5
WSR36 2022019 Cloudy Moderate Mid-Ebb Middle 3.25 13:17 8.67 8.25 32.74 17.11 2.54 9 WSR36 2022019 Cloudy Moderate Mid-Ebb Bottom 5.5 13:17 8.66 8.2 32.74 17.12 2.23 10 WSR36 20220219 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.63 8.31 32.82 17.19 2.41 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.67 17.06 3.63 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Midle 4.2 13:03 8.37 8.04 33.56 17.11 3.2 4 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.35 8.16 33.64 17.12 3.2 4	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:17	8.64	8.29	32.74	17.2	2.88	4
WSR36 2022019 Cloudy Moderate Mid-Ebb Middle 3.25 13:17 8.66 8.2 32.74 17.2 2.23 10 WSR36 2022019 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.69 8.24 32.79 17.13 2.58 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.67 17.03 3.63 5 WSR37 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.65 17.06 3.63 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Midle 4.2 13:03 8.35 8.05 33.64 17.12 3.13 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.2 4	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:17	8.64	8.32	32.76	17.19	2.81	6
WSR36 2022019 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.69 8.24 32.79 17.13 2.58 7 WSR36 2022019 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.63 8.31 32.82 17.19 2.41 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.65 17.06 3.63 6 WSR37 2022019 Cloudy Moderate Mid-Ebb Midtele 4.2 13:03 8.37 8.04 33.58 17.18 3.61 5 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.25	13:17	8.67	8.25	32.74	17.11	2.54	9
WSR36 20220219 Cloudy Moderate Mid-Ebb Bottom 5.5 13:16 8.63 8.31 32.82 17.19 2.41 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.67 17.03 3.63 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.65 17.06 3.63 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Midle 4.2 13:03 8.37 8.04 33.58 17.18 3.61 5 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4 WSR37 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 </td <td>WSR36</td> <td>20220219</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Middle</td> <td>3.25</td> <td>13:17</td> <td>8.66</td> <td>8.2</td> <td>32.74</td> <td>17.2</td> <td>2.23</td> <td>10</td>	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Middle	3.25	13:17	8.66	8.2	32.74	17.2	2.23	10
WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.46 8.12 33.67 17.03 3.63 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.65 17.06 3.63 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Midele 4.2 13:03 8.37 8.04 33.58 17.18 3.61 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.22 4 WSR37 20220222 Cloudy Moderate Mid-Ebb Softom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Midele 1	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	5.5	13:16	8.69	8.24	32.79	17.13	2.58	7
WSR37 20220219 Cloudy Moderate Mid-Ebb Surface 1 13:04 8.31 8.05 33.65 17.06 3.63 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Middle 4.2 13:03 8.37 8.04 33.58 17.18 3.61 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 20220219 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:50 9.59 8.07 31.26 16.93 3.27 6	WSR36	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	5.5	13:16	8.63	8.31	32.82	17.19	2.41	6
WSR37 20220219 Cloudy Moderate Mid-Ebb Middle 4.2 13:03 8.37 8.04 33.58 17.18 3.61 5 WSR37 20220219 Cloudy Moderate Mid-Ebb Middle 4.2 13:03 8.35 8.05 33.56 17.21 3.13 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 20220222 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Midle 11 10:50 9.61 8 31.31 16.92 3.44 6 CE 20220222 Cloudy Moderate Mid-Flood Midle 11 <td>WSR37</td> <td>20220219</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Ebb</td> <td>Surface</td> <td>1</td> <td>13:04</td> <td>8.46</td> <td>8.12</td> <td>33.67</td> <td>17.03</td> <td>3.63</td> <td>5</td>	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:04	8.46	8.12	33.67	17.03	3.63	5
WSR37 20220219 Cloudy Moderate Mid-Ebb Middle 4.2 13:03 8.35 8.05 33.56 17.21 3.13 6 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.13 3.2 4 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.6 8.01 31.27 17.04 3.82 4 CE 20220222 Cloudy Moderate Mid-Flood Midle 11 10:50 9.61 8 31.31 16.92 3.44 6 CE 20220222 Cloudy Moderate Mid-Flood Bottom 21	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Surface	1	13:04	8.31	8.05	33.65	17.06	3.63	6
WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.45 8.16 33.64 17.12 3.25 4 WSR37 2022019 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.6 8.01 31.27 17.04 3.82 4 CE 20220222 Cloudy Moderate Mid-Flood Midele 11 10:50 9.51 8.07 31.26 16.93 3.27 6 CE 20220222 Cloudy Moderate Mid-Flood Bottom 21 10:49 9.65 8.06 31.31 16.92 3.46 5	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.2	13:03	8.37	8.04	33.58	17.18	3.61	5
WSR37 20220219 Cloudy Moderate Mid-Ebb Bottom 7.4 13:02 8.36 8.11 33.62 17.13 3.2 4 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.6 8.01 31.27 17.04 3.82 4 CE 20220222 Cloudy Moderate Mid-Flood Midle 11 10:50 9.61 8 31.31 16.92 3.44 6 CE 20220222 Cloudy Moderate Mid-Flood Midle 11 10:50 9.59 8.07 31.26 16.93 3.27 6 CE 20220222 Cloudy Moderate Mid-Flood Bottom 21 10:49 9.65 8.06 31.33 16.92 3.46 5 CF 20220222 Cloudy Moderate Mid-Flood Surface 1	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Middle	4.2	13:03	8.35	8.05	33.56	17.21	3.13	6
CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.63 8.05 31.28 16.95 3.29 3 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 10:51 9.6 8.01 31.27 17.04 3.82 4 CE 20220222 Cloudy Moderate Mid-Flood Middle 11 10:50 9.61 8 31.31 16.92 3.44 6 CE 20220222 Cloudy Moderate Mid-Flood Middle 11 10:50 9.59 8.07 31.26 16.93 3.27 6 CE 20220222 Cloudy Moderate Mid-Flood Bottom 21 10:49 9.65 8.06 31.33 16.92 3.66 7 CE 20220222 Cloudy Moderate Mid-Flood Surface 1 8:20 9.63 8.01 31.47 16.48 4.56 5	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	13:02	8.45	8.16	33.64	17.12	3.25	4
CE20220222CloudyModerateMid-FloodSurface110:519.68.0131.2717.043.824CE20220222CloudyModerateMid-FloodMiddle1110:509.61831.3116.923.446CE20220222CloudyModerateMid-FloodMiddle1110:509.598.0731.2616.933.276CE20220222CloudyModerateMid-FloodBottom2110:499.658.0631.3316.923.667CE20220222CloudyModerateMid-FloodBottom2110:499.698.0531.317.023.465CF20220222CloudyModerateMid-FloodSurface18:209.72831.416.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMidle10.78:199.698.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319C	WSR37	20220219	Cloudy	Moderate	Mid-Ebb	Bottom	7.4	13:02	8.36	8.11	33.62	17.13	3.2	4
CE20220222CloudyModerateMid-FloodMiddle1110:509.61831.3116.923.446CE20220222CloudyModerateMid-FloodMiddle1110:509.598.0731.2616.933.276CE20220222CloudyModerateMid-FloodBottom2110:499.658.0631.3316.923.667CE20220222CloudyModerateMid-FloodBottom2110:499.698.0531.317.023.465CF20220222CloudyModerateMid-FloodSurface18:209.72831.4116.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMiddle10.78:199.698.0631.3316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416	CE	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:51	9.63	8.05	31.28	16.95	3.29	3
CE20220222CloudyModerateMid-FloodMiddle1110:509.598.0731.2616.933.276CE20220222CloudyModerateMid-FloodBottom2110:499.658.0631.3316.923.667CE20220222CloudyModerateMid-FloodBottom2110:499.658.0631.3316.923.667CE20220222CloudyModerateMid-FloodBottom2110:499.698.0531.317.023.465CF20220222CloudyModerateMid-FloodSurface18:209.72831.416.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMidle10.78:199.698.0631.3316.484.866CF20220222CloudyModerateMid-FloodMidle10.78:199.628.0631.3316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416 <t< td=""><td>CE</td><td>20220222</td><td>Cloudy</td><td>Moderate</td><td>Mid-Flood</td><td>Surface</td><td>1</td><td>10:51</td><td>9.6</td><td>8.01</td><td>31.27</td><td>17.04</td><td>3.82</td><td>4</td></t<>	CE	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:51	9.6	8.01	31.27	17.04	3.82	4
CE20220222CloudyModerateMid-FloodBottom2110:499.658.0631.3316.923.667CE20220222CloudyModerateMid-FloodBottom2110:499.698.0531.317.023.465CF20220222CloudyModerateMid-FloodSurface18:209.72831.416.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMidle10.78:199.698.0631.3116.484.866CF20220222CloudyModerateMid-FloodMidle10.78:199.628.0631.3116.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48<	CE	20220222	Cloudy	Moderate	Mid-Flood	Middle	11	10:50	9.61	8	31.31	16.92	3.44	6
CE20220222CloudyModerateMid-FloodBottom2110:499.698.0531.317.023.465CF20220222CloudyModerateMid-FloodSurface18:209.72831.416.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodSurface18:209.638.0631.4716.484.565CF20220222CloudyModerateMid-FloodMiddle10.78:199.698.0631.316.484.886CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369 <td>CE</td> <td>20220222</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>Middle</td> <td>11</td> <td>10:50</td> <td>9.59</td> <td>8.07</td> <td>31.26</td> <td>16.93</td> <td>3.27</td> <td>6</td>	CE	20220222	Cloudy	Moderate	Mid-Flood	Middle	11	10:50	9.59	8.07	31.26	16.93	3.27	6
CF20220222CloudyModerateMid-FloodSurface18:209.72831.416.594.365CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMiddle10.78:199.698.0631.4716.495.078CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.553.369	CE	20220222	Cloudy	Moderate	Mid-Flood	Bottom	21	10:49	9.65	8.06	31.33	16.92	3.66	7
CF20220222CloudyModerateMid-FloodSurface18:209.638.0131.4716.484.565CF20220222CloudyModerateMid-FloodMiddle10.78:199.698.0631.4716.495.078CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369	CE	20220222	Cloudy	Moderate	Mid-Flood	Bottom	21	10:49	9.69	8.05	31.3	17.02	3.46	5
CF20220222CloudyModerateMid-FloodMiddle10.78:199.698.0631.4716.495.078CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369	CF	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	8:20	9.72	8	31.4	16.59	4.36	5
CF20220222CloudyModerateMid-FloodMiddle10.78:199.628.0631.316.484.886CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369	CF	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	8:20	9.63	8.01	31.47	16.48	4.56	5
CF20220222CloudyModerateMid-FloodBottom20.48:189.578.0331.4816.525.4319CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369	CF	20220222	Cloudy	Moderate	Mid-Flood	Middle	10.7	8:19	9.69	8.06	31.47	16.49	5.07	8
CF20220222CloudyModerateMid-FloodBottom20.48:189.648.0231.3616.565.416WSR0120220222CloudyModerateMid-FloodSurface18:438.788.253216.533.48WSR0120220222CloudyModerateMid-FloodSurface18:438.98.2332.0116.53.369	CF	20220222	Cloudy	Moderate	Mid-Flood	Middle	10.7	8:19	9.62	8.06	31.3	16.48	4.88	6
WSR01 20220222 Cloudy Moderate Mid-Flood Surface 1 8:43 8.78 8.25 32 16.53 3.4 8 WSR01 20220222 Cloudy Moderate Mid-Flood Surface 1 8:43 8.9 8.23 32.01 16.53 3.4 8	CF	20220222	Cloudy	Moderate	Mid-Flood	Bottom	20.4	8:18	9.57	8.03	31.48	16.52	5.43	19
WSR01 20220222 Cloudy Moderate Mid-Flood Surface 1 8:43 8.9 8.23 32.01 16.5 3.36 9	CF	20220222	Cloudy	Moderate	Mid-Flood	Bottom	20.4	8:18	9.64	8.02	31.36	16.56	5.4	16
	WSR01	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	8.78	8.25	32	16.53	3.4	8
WSR01 20220222 Cloudy Moderate Mid-Flood Middle 4.6 8:42 8.72 8.2 32.14 16.53 3.48 11	WSR01	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	8.9	8.23	32.01	16.5	3.36	9
	WSR01	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.6	8:42	8.72	8.2	32.14	16.53	3.48	11

WSR01	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.6	8:42	8.81	8.27	32.12	16.54	3.86	9
WSR01	20220222	Cloudy	Moderate	Mid-Flood	Bottom	8.2	8:41	8.91	8.24	32.12	16.55	3.43	14
WSR01	20220222	Cloudy	Moderate	Mid-Flood	Bottom	8.2	8:41	8.87	8.24	32.02	16.65	3.67	12
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:02	8.91	8.01	31.94	16.78	1.49	14
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:02	8.94	8.03	32.05	16.83	1.73	16
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.65	9:01	8.88	8.06	32.03	16.76	1.96	2.5
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.65	9:01	8.92	8.05	31.91	16.83	2.1	2.5
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Bottom	8.3	9:00	8.92	8.01	31.91	16.8	2.44	5
WSR02	20220222	Cloudy	Moderate	Mid-Flood	Bottom	8.3	9:00	8.98	8	31.94	16.81	2.12	4
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:14	9.37	8.33	31.32	16.65	2.77	5
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:14	9.36	8.33	31.29	16.62	3.18	5
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.1	9:13	9.35	8.32	31.27	16.71	2.91	5
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.1	9:13	9.39	8.3	31.35	16.63	3.3	7
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Bottom	7.2	9:12	9.33	8.28	31.25	16.75	2.65	3
WSR03	20220222	Cloudy	Moderate	Mid-Flood	Bottom	7.2	9:12	9.29	8.3	31.34	16.63	3.09	4
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:27	8.96	8.26	31.24	16.74	3.77	4
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:27	8.97	8.23	31.24	16.87	4.06	4
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:26	8.95	8.21	31.16	16.88	3.15	9
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:26	9.07	8.21	31.3	16.78	3.58	9
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:25	8.98	8.29	31.18	16.82	3.15	14
WSR04	20220222	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:25	8.98	8.21	31.23	16.72	2.79	12
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:28	9.07	8.1	32.02	16.64	3.18	4
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:28	9.09	8.12	31.88	16.7	3.33	5
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Middle	8.35	10:27	9.19	8.09	31.88	16.73	3.21	8
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Middle	8.35	10:27	9.06	8.12	31.98	16.62	3.39	8
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Bottom	15.7	10:26	9.13	8.12	31.87	16.65	2.63	7
WSR16	20220222	Cloudy	Moderate	Mid-Flood	Bottom	15.7	10:26	9.08	8.08	31.94	16.73	2.8	5
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:40	9.01	8.18	31.65	16.54	3.2	9
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:40	8.8	8.15	31.66	16.48	3.44	10
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:39	8.84	8.15	31.69	16.57	2.68	7
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.8	9:39	8.82	8.15	31.6	16.52	2.95	6
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:38	9.01	8.16	31.74	16.53	2.72	7
WSR33	20220222	Cloudy	Moderate	Mid-Flood	Bottom	6.6	9:38	8.86	8.16	31.64	16.47	2.6	9

WSR36	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:52	9.21	8.13	31.65	16.94	3.34	5
WSR36	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	9:52	9.2	8.09	31.59	16.89	2.95	4
WSR36	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.15	9:52	9.24	8.12	31.67	16.82	3.03	11
WSR36	20220222	Cloudy	Moderate	Mid-Flood	Middle	3.15	9:52	9.19	8.13	31.72	16.82	2.86	13
WSR36	20220222	Cloudy	Moderate	Mid-Flood	Bottom	5.3	9:51	9.25	8.11	31.71	16.85	2.33	8
WSR36	20220222	Cloudy	Moderate	Mid-Flood	Bottom	5.3	9:51	9.07	8.17	31.68	16.9	2.57	7
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:06	8.67	8.2	31.76	16.91	3.16	7
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Surface	1	10:06	8.6	8.21	31.87	16.8	3.2	7
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.4	10:05	8.52	8.24	31.87	16.91	3.27	6
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Middle	4.4	10:05	8.56	8.22	31.93	16.89	2.89	6
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Bottom	7.8	10:04	8.67	8.2	31.84	16.79	2.71	12
WSR37	20220222	Cloudy	Moderate	Mid-Flood	Bottom	7.8	10:04	8.67	8.23	31.9	16.9	3.01	14
CE	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	14:34	10.14	8.19	30.75	17.11	4.95	3
CE	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	14:34	9.98	8.12	30.67	17.14	4.82	5
CE	20220222	Cloudy	Moderate	Mid-Ebb	Middle	10.05	14:33	10.14	8.17	30.60	17.10	5.31	9
CE	20220222	Cloudy	Moderate	Mid-Ebb	Middle	10.05	14:33	10.09	8.19	30.75	17.19	5.02	8
CE	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	14:32	10.06	8.2	30.68	17.15	5.3	3
CE	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	14:32	10.21	8.17	30.62	17.24	5.55	3
CF	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	17:03	10.01	8.28	31.62	17.23	4.01	4
CF	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	17:03	9.91	8.22	31.73	17.17	3.66	3
CF	20220222	Cloudy	Moderate	Mid-Ebb	Middle	10.7	17:02	9.92	8.24	31.62	17.17	4.13	8
CF	20220222	Cloudy	Moderate	Mid-Ebb	Middle	10.7	17:02	10.08	8.25	31.66	17.14	4.22	8
CF	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	17:01	10.12	8.24	31.64	17.18	4.71	11
CF	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	17:01	9.98	8.19	31.65	17.24	4.42	13
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:40	9.11	8.28	30.93	17.10	3.59	6
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:40	9.18	8.31	30.76	17.13	3.57	7
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Middle	4.4	16:39	9.17	8.31	30.91	17.01	3.78	6
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Middle	4.4	16:39	9.12	8.31	30.78	17.11	3.91	4
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	7.8	16:38	9.11	8.25	30.76	17.15	2.99	5
WSR01	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	7.8	16:38	9.08	8.31	30.92	17.09	3.16	4
WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:21	9.34	8.21	31.03	17.29	1.99	9
WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:21	9.42	8.18	31.04	17.28	1.87	7
WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Middle	4.5	16:20	9.24	8.19	30.94	17.27	2.01	15

WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Middle	4.5	16:20	9.37	8.22	31.08	17.19	1.89	13
WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	8	16:19	9.42	8.11	30.98	17.20	2.41	5
WSR02	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	8	16:19	9.22	8.12	31.11	17.31	2.37	6
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:06	9.77	8.26	31.24	16.79	3.84	15
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	16:06	9.91	8.18	31.27	16.87	3.39	16
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.9	16:05	9.73	8.18	31.21	16.89	3.83	17
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.9	16:05	9.8	8.2	31.30	16.79	3.88	18
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	16:04	9.82	8.27	31.20	16.82	3.13	10
WSR03	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	16:04	9.82	8.29	31.30	16.92	3.24	10
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:54	9.94	8.3	31.09	17.18	3.53	10
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:54	9.95	8.24	31.06	17.12	3.61	8
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.6	15:53	10.01	8.27	31.01	17.11	3.32	6
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.6	15:53	9.95	8.3	31.12	17.20	3.53	7
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	15:52	10	8.29	31.03	17.14	2.95	10
WSR04	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.2	15:52	9.9	8.28	31.08	17.19	3.23	12
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	14:56	9.62	8.11	30.82	17.12	3.68	7
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	14:56	9.72	8.11	30.81	17.26	3.76	8
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Middle	8.05	14:55	9.66	8.09	30.84	17.17	3.45	13
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Middle	8.05	14:55	9.69	8.12	30.85	17.22	3.46	10
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	15.1	14:54	9.61	8.08	30.88	17.24	3.56	6
WSR16	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	15.1	14:54	9.8	8.07	30.77	17.26	3.04	8
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:40	9.74	8.18	31.02	16.82	3.98	4
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:40	9.79	8.13	31.03	16.85	4.08	4
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.75	15:39	9.85	8.15	31.00	16.83	4.3	4
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.75	15:39	9.81	8.11	31.14	16.77	3.68	5
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	15:38	9.87	8.15	31.03	16.80	3.74	4
WSR33	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	15:38	9.8	8.21	31.03	16.90	3.31	б
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:27	9.99	8.21	31.28	16.69	3.49	8
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:27	10.03	8.12	31.21	16.69	3.58	7
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.85	15:27	10.14	8.11	31.17	16.67	3.64	10
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.85	15:27	10.07	8.19	31.15	16.62	3.84	12
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	15:26	10.12	8.11	31.21	16.72	3.59	4
WSR36	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.7	15:26	10.04	8.1	31.24	16.67	3.18	5

WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:16	9.81	8.12	31.62	16.72	3.47	7
WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Surface	1	15:16	9.72	8.12	31.71	16.69	3.88	8
WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.95	15:15	9.73	8.05	31.63	16.76	3.09	4
WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Middle	3.95	15:15	9.69	8.04	31.60	16.75	3.61	5
WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	15:14	9.73	8.1	31.70	16.78	3.35	8
WSR37	20220222	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	15:14	9.77	8.09	31.59	16.72	3.58	11
CE	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	12:30	9.57	8.32	32.88	17.13	3.86	7
CE	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	12:30	9.72	8.3	33.07	17.2	4.01	8
CE	20220224	Cloudy	Moderate	Mid-Flood	Middle	12.1	12:29	9.57	8.3	33.11	17.17	3.56	8
CE	20220224	Cloudy	Moderate	Mid-Flood	Middle	12.1	12:29	9.75	8.36	33.08	17.1	3.57	5
CE	20220224	Cloudy	Moderate	Mid-Flood	Bottom	23.2	12:28	9.54	8.32	32.95	17.03	3.67	4
CE	20220224	Cloudy	Moderate	Mid-Flood	Bottom	23.2	12:28	9.66	8.35	32.92	17.2	3.74	4
CF	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	9:50	9.32	8.26	33.11	17.27	4.86	6
CF	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	9:50	9.14	8.35	33.29	17.37	4.09	4
CF	20220224	Cloudy	Moderate	Mid-Flood	Middle	10.25	9:49	9.33	8.28	33.26	17.36	4.92	5
CF	20220224	Cloudy	Moderate	Mid-Flood	Middle	10.25	9:49	9.2	8.26	33.13	17.33	4.89	5
CF	20220224	Cloudy	Moderate	Mid-Flood	Bottom	19.5	9:48	9.25	8.32	33.15	17.19	5.46	4
CF	20220224	Cloudy	Moderate	Mid-Flood	Bottom	19.5	9:48	9.25	8.32	33.06	17.26	5.5	4
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:13	9.37	8.35	33.57	16.81	3.38	5
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:13	9.4	8.34	33.51	16.95	3.19	4
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.25	10:12	9.49	8.26	33.38	16.9	3.17	5
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.25	10:12	9.3	8.31	33.44	16.77	2.67	4
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Bottom	7.5	10:11	9.32	8.31	33.45	16.78	2.65	5
WSR01	20220224	Cloudy	Moderate	Mid-Flood	Bottom	7.5	10:11	9.29	8.29	33.4	16.97	2.83	5
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:33	9.77	8.3	32.78	17.35	2.35	6
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:33	9.66	8.27	32.75	17.37	2.57	4
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.5	10:32	9.65	8.31	32.82	17.38	1.91	3
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.5	10:32	9.61	8.27	32.85	17.28	2.29	4
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Bottom	8	10:31	9.76	8.27	32.86	17.36	1.97	4
WSR02	20220224	Cloudy	Moderate	Mid-Flood	Bottom	8	10:31	9.72	8.25	32.78	17.47	2.04	4
WSR03	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:47	9.73	8.19	32.98	17.25	3.06	5
WSR03	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	10:47	9.65	8.09	33	17.28	3.14	3
WSR03	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.8	10:46	9.75	8.2	32.78	17.19	2.76	5
		5											

WSR03	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.8	10:46	9.64	8.18	32.98	17.33	3.08	6
WSR03	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.6	10:45	9.67	8.16	32.78	17.31	2.61	5
WSR03	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.6	10:45	9.69	8.15	32.9	17.15	3.04	5
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:02	9.96	8.31	32.85	17.3	2.54	5
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:02	9.82	8.38	32.91	17.32	2.22	6
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.7	11:01	9.96	8.36	32.72	17.23	2.06	8
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.7	11:01	10.05	8.35	32.79	17.24	2.14	7
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.4	11:00	9.87	8.34	32.93	17.27	1.5	7
WSR04	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.4	11:00	9.94	8.33	32.72	17.21	1.53	8
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	12:07	9.43	8.35	33.71	17.49	2.74	7
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	12:07	9.38	8.28	33.63	17.52	2.36	6
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Middle	7.7	12:06	9.42	8.33	33.56	17.52	2.69	5
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Middle	7.7	12:06	9.36	8.3	33.82	17.51	2.49	6
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Bottom	14.4	12:05	9.34	8.3	33.57	17.61	1.72	5
WSR16	20220224	Cloudy	Moderate	Mid-Flood	Bottom	14.4	12:05	9.4	8.37	33.72	17.61	1.99	5
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:19	9.16	8.27	33.2	17.16	2.65	5
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:19	9.07	8.37	33.08	16.98	2.82	6
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.5	11:18	9.21	8.35	33	17.08	2.96	5
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.5	11:18	9.02	8.28	33.15	16.99	2.56	7
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6	11:17	9.22	8.29	33.01	17.17	2.37	5
WSR33	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6	11:17	9.12	8.31	33	17.02	2.84	7
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:32	9.83	8.4	33.07	17.21	2.51	6
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:32	9.92	8.3	33.15	17.28	2.61	6
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.65	11:32	9.94	8.36	33.11	17.24	2.33	8
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Middle	3.65	11:32	9.75	8.37	33.06	17.28	2.61	7
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.3	11:31	9.84	8.34	33.07	17.2	1.92	6
WSR36	20220224	Cloudy	Moderate	Mid-Flood	Bottom	6.3	11:31	9.81	8.3	33.01	17.21	2.16	6
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:45	9.55	8.29	32.86	17.53	3.54	5
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Surface	1	11:45	9.54	8.28	32.88	17.59	3.34	4
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.3	11:44	9.64	8.27	32.86	17.49	3.02	6
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Middle	4.3	11:44	9.68	8.33	33.07	17.6	3.06	6
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Bottom	7.6	11:43	9.72	8.22	33.1	17.58	2.57	4
WSR37	20220224	Cloudy	Moderate	Mid-Flood	Bottom	7.6	11:43	9.72	8.21	33	17.57	2.55	5

CE	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	15:29	9.77	8.26	32.75	17.39	4.22	8
CE	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	15:29	9.77	8.18	32.75	17.41	3.96	б
CE	20220224	Cloudy	Moderate	Mid-Ebb	Middle	11.3	15:28	9.8	8.2	32.67	17.32	3.96	6
CE	20220224	Cloudy	Moderate	Mid-Ebb	Middle	11.3	15:28	9.82	8.26	32.84	17.29	4	б
CE	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	21.6	15:27	9.71	8.23	32.61	17.38	4.61	6
CE	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	21.6	15:27	9.76	8.23	32.72	17.31	4.55	5
CF	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	18:02	9.7	8.27	33.44	17.82	3.15	б
CF	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	18:02	9.83	8.22	33.61	17.86	3.04	5
CF	20220224	Cloudy	Moderate	Mid-Ebb	Middle	10.05	18:01	9.89	8.28	33.62	17.84	3.43	6
CF	20220224	Cloudy	Moderate	Mid-Ebb	Middle	10.05	18:01	9.75	8.23	33.54	17.79	3.59	6
CF	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	18:00	9.81	8.22	33.62	17.74	3.87	5
CF	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	19.1	18:00	9.82	8.22	33.55	17.74	3.66	б
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:37	10.04	8.26	33.02	17.28	3.26	7
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:37	10.09	8.25	33.04	17.25	2.82	7
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.55	17:36	10.04	8.28	33.07	17.23	2.69	7
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.55	17:36	10.01	8.28	33.1	17.36	2.85	8
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	8.1	17:35	9.92	8.25	32.96	17.29	2.36	5
WSR01	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	8.1	17:35	10.08	8.22	32.98	17.34	2.72	8
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:18	10.09	8.2	32.89	17.52	2.13	7
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:18	10	8.13	32.64	17.56	1.82	б
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.85	17:17	10.19	8.18	32.82	17.51	2.24	4
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.85	17:17	10	8.13	32.63	17.61	2.13	5
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	8.7	17:16	10.18	8.16	32.65	17.55	2.09	4
WSR02	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	8.7	17:16	10	8.18	32.83	17.5	1.88	5
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:03	10.11	8.27	33.24	17.07	3.16	6
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	17:03	9.95	8.2	33.21	17.09	3.16	6
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.7	17:02	10.01	8.23	33.24	17.18	2.44	5
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.7	17:02	10.08	8.21	33.25	17.09	2.77	3
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.4	17:01	10	8.27	33.3	17.09	2.18	5
WSR03	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.4	17:01	10.03	8.25	33.24	17.03	1.93	7
WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:51	9.15	8.46	32.51	17.25	3.52	5
WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:51	9.26	8.4	32.57	17.23	3.46	3
WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.9	16:50	9.31	8.47	32.62	17.25	2.87	б

WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.9	16:50	9.18	8.44	32.45	17.21	2.69	6
WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	16:49	9.22	8.39	32.62	17.32	2.54	6
WSR04	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	16:49	9.25	8.44	32.45	17.33	2.46	9
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	15:50	9.15	8.4	33.5	17.34	3.47	6
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	15:50	9.09	8.35	33.52	17.29	3.55	6
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Middle	8.4	15:49	9.26	8.4	33.35	17.41	3.14	5
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Middle	8.4	15:49	9.14	8.36	33.54	17.42	3.42	6
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	15.8	15:48	9.16	8.33	33.35	17.43	3.15	5
WSR16	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	15.8	15:48	9.11	8.38	33.59	17.44	3.32	4
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:37	9.11	8.19	33.17	17.67	2.96	6
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:37	9.3	8.23	33.03	17.71	2.95	8
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.8	16:36	9.29	8.2	33.11	17.7	2.01	5
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.8	16:36	9.26	8.16	33.25	17.79	2.16	4
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.6	16:35	9.31	8.23	33.07	17.72	2.15	6
WSR33	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	6.6	16:35	9.23	8.19	33.02	17.71	2.3	5
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:23	9.09	8.35	32.75	17.1	2.74	4
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:23	9.02	8.37	32.9	17.21	3.03	4
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.15	16:23	8.88	8.32	32.72	17.26	3.02	6
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Middle	3.15	16:23	9	8.33	32.92	17.14	2.88	7
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	5.3	16:22	8.87	8.35	32.78	17.11	2.38	6
WSR36	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	5.3	16:22	9.01	8.36	32.69	17.18	2.42	8
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:10	9.43	8.37	33.34	17.68	2.61	6
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Surface	1	16:10	9.5	8.3	33.22	17.8	2.58	7
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.25	16:09	9.38	8.31	33.16	17.64	2.79	5
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Middle	4.25	16:09	9.5	8.31	33.34	17.66	2.61	5
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	16:08	9.43	8.29	33.16	17.75	2.37	5
WSR37	20220224	Cloudy	Moderate	Mid-Ebb	Bottom	7.5	16:08	9.45	8.29	33.33	17.72	2.21	6
CE	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	10:26	9.77	8.3	31.37	16.58	3.51	8
CE	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	10:26	10	8.26	31.41	16.52	4.11	9
CE	20220226	Cloudy	Moderate	Mid-Flood	Middle	10.5	10:25	9.91	8.25	31.39	16.43	3.59	7
CE	20220226	Cloudy	Moderate	Mid-Flood	Middle	10.5	10:25	9.95	8.29	31.45	16.57	3.5	5
CE	20220226	Cloudy	Moderate	Mid-Flood	Bottom	20	10:24	9.97	8.24	31.39	16.58	3.66	6
CE	20220226	Cloudy	Moderate	Mid-Flood	Bottom	20	10:24	9.82	8.25	31.45	16.69	4.09	6

CF	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	9.5	8.26	31.36	16.48	4.55	8
CF	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:02	9.58	8.32	31.34	16.38	4.67	8
CF	20220226	Cloudy	Moderate	Mid-Flood	Middle	10.35	8:01	9.74	8.27	31.37	16.55	4.68	6
CF	20220226	Cloudy	Moderate	Mid-Flood	Middle	10.35	8:01	9.74	8.27	31.41	16.49	4.98	7
CF	20220226	Cloudy	Moderate	Mid-Flood	Bottom	19.7	8:00	9.72	8.28	31.38	16.57	4.74	5
CF	20220226	Cloudy	Moderate	Mid-Flood	Bottom	19.7	8:00	9.55	8.27	31.36	16.65	5	5
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:26	9.84	8.38	32.07	16.55	3.23	5
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:26	10.02	8.41	32.07	16.58	2.9	6
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.7	8:25	9.68	8.35	32.02	16.37	2.48	7
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.7	8:25	9.97	8.37	32.02	16.35	2.87	6
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Bottom	8.4	8:24	9.73	8.35	32.06	16.37	2.65	6
WSR01	20220226	Cloudy	Moderate	Mid-Flood	Bottom	8.4	8:24	9.83	8.35	32.06	16.42	2.48	5
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	9.5	8.45	31.58	16.41	2.37	3
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:43	9.26	8.5	31.57	16.43	2.49	4
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.75	8:42	9.48	8.46	31.54	16.31	2.3	5
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.75	8:42	9.51	8.49	31.54	16.39	2.6	7
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Bottom	8.5	8:41	9.37	8.46	31.5	16.45	2.24	6
WSR02	20220226	Cloudy	Moderate	Mid-Flood	Bottom	8.5	8:41	9.37	8.49	31.57	16.64	2.31	5
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:55	9.47	8.18	31.62	16.45	2.29	7
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	8:55	9.4	8.19	31.65	16.26	2.47	8
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.25	8:54	9.58	8.21	31.66	16.33	2.54	6
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.25	8:54	9.52	8.18	31.62	16.13	2.46	5
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Bottom	7.5	8:53	9.44	8.18	31.69	16.28	2.11	3
WSR03	20220226	Cloudy	Moderate	Mid-Flood	Bottom	7.5	8:53	9.4	8.22	31.62	16.13	2.3	5
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	9.85	8.33	31.54	16.49	3.28	5
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:06	10.06	8.38	31.5	16.43	2.98	9
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.35	9:05	10.02	8.38	31.51	16.44	2.81	6
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.35	9:05	10.03	8.38	31.53	16.65	2.97	6
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Bottom	5.7	9:04	9.79	8.34	31.52	16.4	2.36	5
WSR04	20220226	Cloudy	Moderate	Mid-Flood	Bottom	5.7	9:04	9.81	8.36	31.48	16.53	2.23	5
WSR16	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	10:04	9.61	8.31	32.39	16.51	3.09	5
WSR16	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	10:04	9.56	8.28	32.4	16.57	3.07	7
WSR16	20220226	Cloudy	Moderate	Mid-Flood	Middle	8.05	10:03	9.63	8.34	32.38	16.28	2.18	6

WSR16	20220226	Cloudy	Moderate	Mid-Flood	Middle	8.05	10:03	9.64	8.28	32.42	16.52	2.58	4
WSR16	20220226	Cloudy	Moderate	Mid-Flood	Bottom	15.1	10:02	9.63	8.3	32.43	16.32	2.45	2.5
WSR16	20220226	Cloudy	Moderate	Mid-Flood	Bottom	15.1	10:02	9.7	8.33	32.43	16.56	2.69	3
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:19	9.82	8.25	31.88	16.41	2.73	5
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:19	9.93	8.2	31.9	16.39	2.4	5
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.65	9:18	10.01	8.26	31.87	16.36	2.2	5
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.65	9:18	9.84	8.2	31.83	16.3	2.44	4
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Bottom	6.3	9:17	9.69	8.26	31.83	16.57	1.65	5
WSR33	20220226	Cloudy	Moderate	Mid-Flood	Bottom	6.3	9:17	9.93	8.21	31.89	16.42	1.72	7
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:30	9.89	8.16	32.04	16.19	3.69	7
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:30	9.93	8.18	32.03	16.19	3.79	7
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.25	9:30	10.23	8.19	32.01	16.24	3.51	4
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Middle	3.25	9:30	10.04	8.19	32.02	16.19	3.23	4
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Bottom	5.5	9:29	10.18	8.2	32.02	16.21	2.99	7
WSR36	20220226	Cloudy	Moderate	Mid-Flood	Bottom	5.5	9:29	10.23	8.21	32.03	16.33	3.4	6
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:44	9.72	8.45	31.93	16.22	2.2	4
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Surface	1	9:44	9.66	8.47	31.92	16.46	2.44	5
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.25	9:43	9.58	8.46	31.89	16.21	2.38	4
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Middle	4.25	9:43	9.49	8.42	31.86	16.42	2.05	4
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Bottom	7.5	9:42	9.59	8.47	31.85	16.4	2.14	4
WSR37	20220226	Cloudy	Moderate	Mid-Flood	Bottom	7.5	9:42	9.55	8.43	31.93	16.16	1.93	5
CE	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	17:34	8.77	8.38	31.93	16.66	5.49	4
CE	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	17:34	8.84	8.42	32.00	16.73	5.61	4
CE	20220226	Cloudy	Moderate	Mid-Ebb	Middle	10.95	17:33	8.79	8.37	32.08	16.55	5.81	5
CE	20220226	Cloudy	Moderate	Mid-Ebb	Middle	10.95	17:33	8.83	8.4	32.02	16.66	6.06	3
CE	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	20.9	17:32	8.78	8.41	32.04	16.65	6.14	5
CE	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	20.9	17:32	8.97	8.38	32.08	16.57	6.1	4
CF	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:51	9.07	8.31	31.60	16.56	4.94	4
CF	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:51	8.98	8.31	31.63	16.45	4.67	5
CF	20220226	Cloudy	Moderate	Mid-Ebb	Middle	10.7	19:50	9.15	8.27	31.64	16.42	4.82	4
CF	20220226	Cloudy	Moderate	Mid-Ebb	Middle	10.7	19:50	9.18	8.31	31.69	16.39	4.69	5
CF	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	19:49	8.98	8.29	31.69	16.37	4.88	4
CF	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	20.4	19:49	9.14	8.29	31.60	16.55	4.92	4

WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:30	9.76	8.34	31.44	16.48	3.48	6
WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:30	9.79	8.31	31.51	16.59	3.96	6
WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Middle	4.7	19:29	9.8	8.32	31.43	16.58	3.77	5
WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Middle	4.7	19:29	9.81	8.31	31.45	16.58	3.74	3
WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	19:28	9.72	8.31	31.55	16.57	2.88	3
WSR01	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	8.4	19:28	9.76	8.36	31.56	16.42	3.17	3
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:13	9.84	8.31	31.24	16.61	1.98	3
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	19:13	9.85	8.3	31.15	16.76	2.16	3
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Middle	4.95	19:12	9.76	8.34	31.25	16.55	2.24	4
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Middle	4.95	19:12	9.69	8.33	31.24	16.65	2.47	4
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	8.9	19:11	9.86	8.3	31.13	16.74	2.48	4
WSR02	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	8.9	19:11	9.83	8.31	31.19	16.57	2.3	3
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:59	9.07	8.39	32.06	16.40	3.79	5
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:59	9.13	8.38	32.00	16.41	3.65	5
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.7	18:58	9.09	8.41	31.99	16.53	3.43	6
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.7	18:58	9.01	8.42	32.12	16.54	3.54	5
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.4	18:57	8.92	8.41	32.06	16.47	3.58	5
WSR03	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.4	18:57	9.17	8.39	32.15	16.53	3.61	3
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:48	9.11	8.28	31.90	16.64	4.59	4
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:48	9.04	8.28	31.92	16.61	4.55	7
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.9	18:47	9.09	8.28	31.96	16.55	4.18	4
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.9	18:47	9.27	8.27	31.84	16.62	4.48	4
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	18:46	9.19	8.26	31.97	16.62	3.8	5
WSR04	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.8	18:46	9.12	8.24	31.91	16.49	4.02	3
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	17:54	8.93	8.35	31.96	16.65	2.89	4
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	17:54	9.09	8.34	31.94	16.60	3.08	3
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Middle	8.3	17:53	9.1	8.34	31.93	16.69	2.73	4
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Middle	8.3	17:53	9.08	8.36	32.03	16.59	2.69	4
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	15.6	17:52	9.05	8.31	32.01	16.72	3.15	4
WSR16	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	15.6	17:52	9.13	8.35	31.97	16.66	2.79	5
WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:37	9.25	8.21	32.00	16.64	3.88	5
WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:37	9.09	8.24	31.93	16.58	3.6	3
WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.65	18:36	9.13	8.22	31.92	16.56	2.99	6
		-											

WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.65	18:36	9.25	8.23	31.97	16.76	3.27	5
WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	18:35	9.16	8.19	31.96	16.58	3.15	7
WSR33	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.3	18:35	9.21	8.22	31.99	16.54	2.86	5
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:24	9.69	8.15	31.23	16.42	3.05	6
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:24	9.55	8.2	31.24	16.33	2.58	4
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.75	18:24	9.55	8.17	31.32	16.51	2.81	6
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.75	18:24	9.78	8.18	31.28	16.53	2.41	7
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	18:23	9.63	8.15	31.31	16.37	2.32	5
WSR36	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.5	18:23	9.63	8.19	31.32	16.41	2.3	5
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:13	8.82	8.42	31.40	16.47	2.68	5
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Surface	1	18:13	8.75	8.4	31.49	16.48	3.19	3
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.95	18:12	8.77	8.43	31.50	16.69	2.82	4
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Middle	3.95	18:12	8.85	8.41	31.47	16.52	2.95	4
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	18:11	8.98	8.43	31.43	16.55	2.68	5
WSR37	20220226	Cloudy	Moderate	Mid-Ebb	Bottom	6.9	18:11	9	8.39	31.41	16.58	3.05	4

Landfill Gas Monitoring - Field Measurement Recording Sheet

Contract Title Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Contract No. : 13/WSD/17

Serial No.	Monitoring Equipment	Last Calibration
254938	GMI-PS500	29/9/2021

		T '	Weather Condition		Landfill Gas	Parameters		Physical Parameters		Measu	red by
Monitoring Location	Date (dd/mm/yyyy)	Time (hh:mm)	Sunny/ Fine/ Overcast/ Drizzle/ Rain/ Storm/ Hazy	Methane (%LEL)	Oxygen (%)	Carbon Dioxide (%)	Balance Gas (%) (e.g. H2S)	Temp (°C) / Pressure mBar	Trench Depth (m)	Name	Signature
Ch1+625 - Ch1+513	8/2/22	08:30	Fine	Ø	20.9	0.04	0	16.1/1918.2	2	Peter Au	help
Ch1+625 - Ch1+513	-11-	13:30	Fire	0	20.07	004	0	20.8/1018.2	2	Peter Au	Atal
Ch1+625 - Ch1+513	9/2/22	08:30	tive	Ø	20.9	0.04	9	17.0/1018.9	2	Peter Au	Altert
Ch1+625 - Ch1+513	-11-	13:30	Fine	0	20.9	0.04	Q	21,2/1019.1	2	Peter Au	Arth
Ch1+625 - Ch1+513	10/2/22	08:30	Fine	0	20.9	0.24	0	16.8 /1016.	2	Peter Au	Actor
Ch1+625 - Ch1+513	-11-	13:30	Find	0	20.5	9.94	Ø	21.3/1017.2	2	Peter Au	Ret.A
Ch1+625 - Ch1+513	11/2/22	08:30	Snung	0	20.9	0.04	9	16.4/1017.0	2	Peter Au	Atch
Ch1+625 - Ch1+513		13:30	Snuny	9	20.9	0.04	9	20.6/1016.8	2	Peter Au	Sitist
Ch1+625 - Ch1+513	12/2/22	08:30	Overcast	O	20.P	0.04	٥	16.2/1016.1	2	Peter Au	Petit
Ch1+625 - Ch1+513		13:30	Overcast	9	20.9	0.04	0	20.1/1016.0	2	Peter Au	Ritan
Ch1+625 - Ch1+513		08:30			L.			/		Peter Au	
Ch1+625 - Ch1+513		13:30						1		Peter Au	
Ch1+625 - Ch1+513		08:30						/		Peter Au	
Ch1+625 - Ch1+513		13:30						/		Peter Au	

Checked by :

Nov

Date

12-2-2022

Landfill Gas Monitoring - Field Measurement Recording Sheet

Contract Title Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Contract No. : 13/WSD/17

	Serial No.	Monitoring Equipment	Last Calibration
Γ	254938	GMI-PS500	29/9/2021
Γ			
Γ			

	D. (T '	Weather Condition		Landfill Gas	Parameters		Physical Parameters		Measu	red by
Monitoring Location	Date (dd/mm/yyyy)	Time (hh:mm)	Sunny/ Fine/ Overcast/ Drizzle/ Rain/ Storm/ Hazy	Methane (%LEL)	Oxygen (%)	Carbon Dioxide (%)	Balance Gas (%) (e.g. H2S)	Temp (°C) / Pressure mBar	Trench Depth (m)	Name	Signature
Ch1+625 - Ch1+513	14/2/22	08:30	Dr. 331-	S	20.9	0.54	P	14.8 1007.2	2	Peter Au	Pater
Ch1+625 - Ch1+513	- in	13:30	Drizzle	Q	20.9	0,54	0	18.2/1017.0	2	Peter Au	Patrick
Ch1+625 - Ch1+513	15 2 22	08:30	·Fine	J	20.0	0.04	0	14.5/1017.3		Peter Au	ptak
Ch1+625 - Ch1+513	Lin	13:30	Fire	0	20-7	0,04	0	19.1/1017.5	2	Peter Au	Path
Ch1+625 - Ch1+513	16222	08:30	Fine	Ð	20.P	0.02	0	14.8 /1015.7	2	Peter Au	Ritch
Ch1+625 - Ch1+513	-1-	13:30	Overcast	D	20.0	0.02	9	18.0/1016.1	2	Peter Au	Bitt
Ch1+625 - Ch1+513	17/2/22	08:30	Pain	Q	20-9	0.04	Q	15.1/1015.1	2	Peter Au	pteh
Ch1+625 - Ch1+513	_ 1-	13:30	Rain	D	20.0	0.04	9	16.8 1015.2	2	Peter Au	Ater
Ch1+625 - Ch1+513		08:30						/		Peter Au	
Ch1+625 - Ch1+513		13:30						/		Peter Au	
Ch1+625 - Ch1+513		08:30						/		Peter Au	
Ch1+625 - Ch1+513		13:30						/		Peter Au	
Ch1+625 - Ch1+513		08:30						/		Peter Au	
Ch1+625 - Ch1+513		13:30						/		Peter Au	

Naz Checked by : (7-2-2022 Date

Appendix M

HOKLAS Laboratory Certificate

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

> This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可證詞委員會的證據下獲委准認可處執行機關接受為

> HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行義於認可範圍內下述測試類別中的指定測試成校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communique), 此場 ISO/IEC 17025:2005 的部項責務理界共変整新用最相定素額分析最後的技術能力並 實現一套實驗所實量領理體系(見國際超可論層、國際實驗所認可含作組織及國際標準化組織的關合公廳)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 限經素灌肥可處執行機關授權在此首上香港認可處的印章

WONG Wang-wah, Exacutive Administrator 執行幹事 養宏華 Issue Date: 16 July 2014 發發日期:二零一四年七月十六日 Registration Number: HOKLAS 241 註冊號碼:

This certificate is issued subject to be terms and conditions laid down by HKAS 本證書經經書進證可處訂立的傳說及信件證出

Date of First Registration : 16 July 2014 首次註冊日期:二零一四年七月十六日

L 001195

Appendix N

Water Quality and Landfill Gas Equipment Calibration Certificate

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB010050 : 13 January 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan Kowloon (HK) Hong Kong Attn :

PART B - SAMPLE INFORMATION

Name of Equipment :	HORIBA U-53
Manufacturer :	HORIBA
Serial Number :	S2A98W8H
Date of Received :	10 January 2022
Date of Calibration :	11 January 2022
Date of Next Calibration :	10 April 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Reference Method
APHA 21e 2130B
APHA 21e 4500 O
APHA 21e 4500 H+
APHA 21e 2520B
Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
2008: Working Thermometer Calibration Procedure

PART D - CALIBRATION RESULT

(1) Turbidity

EXPECTED READING (NTU)	DISPLAY READING (NTU)	TOLERANCE (%)	RESULT
0	0		Satisfactory
10	10.4	4.0	Satisfactory
20	20.2	1.0	Satisfactory
100	105	5.0	Satisfactory
800	798	-0.3	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(2) Dissolved oxygen

EXPECTED READING (MG/L)	DISPLAY READING (MG/L)	TOLERANCE (MG/L)	RESULT
8.87	8.84	-0.03	Satisfactory
6.05	6.43	0.38	Satisfactory
4.47	4.67	0.20	Satisfactory
2.03	2.37	0.34	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \mbox{ 0.5 (mg/L)}$

(3) pH value

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.	:R-H
Date of Issue	:13
Page No.	:2 o

: R-BB010050 : 13 January 2022 : 2 of 2

TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT
4.00	3.96	-0.04	Satisfactory
7.42	7.24	-0.18	Satisfactory
10.01	9.87	-0.14	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(4) Salinity

EXPECTED READING (G/L)	DISPLAY READING (G/L)	TOLERANCE (%)	RESULT
10	9.23	-7.70	Satisfactory
20	19.19	-4.05	Satisfactory
30	29.14	-2.87	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

(5) Temperature

READING OF REF. THERMOMETER ($^{\circ}C$)	DISPLAY READING (°C)	TOLERANCE (°C)	RESULT
19	19.25	0.25	Satisfactory
24	23.70	-0.30	Satisfactory
33	32.84	-0.16	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB020007 : 10 February 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan Kowloon (HK) Hong Kong Attn :

PART B - SAMPLE INFORMATION

Name of Equipment :	HORIBA U-53
Manufacturer :	HORIBA
Serial Number :	PORBNFNT
Date of Received :	07 February 2022
Date of Calibration :	07 February 2022
Date of Next Calibration :	07 May 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
Turbidity	APHA 21e 2130B
Dissolved oxygen	APHA 21e 4500 O
pH value	APHA 21e 4500 H+
Salinity	APHA 21e 2520B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure

PART D - CALIBRATION RESULT

(1) Turbidity

EXPECTED READING (NTU)	DISPLAY READING (NTU)	TOLERANCE (%)	RESULT
0	0		Satisfactory
10	9.78	-2.2	Satisfactory
20	20.7	3.5	Satisfactory
100	99.5	-0.5	Satisfactory
800	792	-1.0	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(2) Dissolved oxygen

EXPECTED READING (MG/L)	DISPLAY READING (MG/L)	TOLERANCE (MG/L)	RESULT
9.26	9.29	0.03	Satisfactory
6.81	6.98	0.17	Satisfactory
4.52	5.01	0.49	Satisfactory
3.94	4.37	0.43	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \mbox{ 0.5 (mg/L)}$

(3) pH value

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.	:R-BB020007
Date of Issue	: 10 February 2
Page No.	: 2 of 2

. K-DD020007
: 10 February 2022
· 2 .f 2

			RESULT
TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT
4.00	3.99	-0.01	Satisfactory
7.42	7.42	0.00	Satisfactory
10.01	10.12	0.11	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(4) Salinity

EXPECTED READING (G/L)	DISPLAY READING (G/L)	TOLERANCE (%)	RESULT
10	9.31	-6.90	Satisfactory
20	20.25	1.25	Satisfactory
30	31.68	5.60	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

(5) Temperature

READING OF REF. THERMOMETER (°C)	DISPLAY READING (°C)	TOLERANCE (°C)	RESULT
18	17.80	-0.2	Satisfactory
26	25.82	-0.18	Satisfactory
32.5	32.14	-0.36	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

Remark(s)

. The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Customer Name	PROMAT (HK) LTD
Customer Details	SAN PO KONG
	KOWLOON
	HONG KONG
Order Number	21000418
Acknowledgement Number	165921
Instrument	PS500
Serial number	254928
Test Date	29 September 2021

This instrument has been manufactured in accordance with our ISO9001 approved procedures and conforms to the quality and manufacturing standards laid down in our process. This instrument has been calibrated using gases that are traceable to national standards.

CALIBRATION RESULTS

Gas Applied	Conc.	Range	After Cal
CO2	3.00 % CO2	÷	3.00 %
Methane	50 % LEL	LEL	50 %
02	Air	& VOL	20.9 %
H2S	50 PPM H2S	PPM	50 PPM
со	500 PPM CO	PPM	499 PPM

Calibrated on behalf of GMI Ltd by:

TELEDYNE GAS MEASUREMENT INSTRUMENTS Everywhere**you**look[™]

PS500

Portable 5 Gas Monitor

Designed by our customers, this robust and accurate gas detector provides unrivalled protection in confined space applications.

Auto Bump & Calibration Station

- Simple user interface
- Bump test or calibration
- Bump/calibration results storage
- Standalone, PC or Ethernet options
- Robust construction

Features

- Over 15 "plug-and-play" smart sensors
- PID sensors for VOC detection
- Flexible configuration to suit your requirements
- Audible and visual alarms
- Datalogging for calibration certificates, data management, and event logging
- Robust construction
- Internal pump (optional)
- Easy maintenance
- Low cost of ownership

Description

The PS500 can be configured to detect up to five gases with its electrochemical and catalytic sensors, photo ionisation detectors (PID), and infrared capabilities.

"Plug and Play" maximizes flexibility by allowing other gases to be detected, by simply inserting a new smart sensor assembly.

The PS500 is effective in noisy environments, featuring a loud (95dB) penetrating and distinctive audible alarm together with a high visibility visual alarm.

With a robust, rubberized casing guaranteeing hi-Impact resistance, the PS500 is ideal for the most demanding industrial environments. An optional internal pump allows both pumped or diffusion measurements. If the pump is fitted, it can be easily turned on/off, depending on application. E.g. pump on to perform pre-entry measurements correctly, pump off for confined space working.

Technical Specification

Size:	140 x 85 x 45 mm / 5.5" x 3.3" x 1.7"
Weight:	0.4 kg / 14 oz.
Humidity:	0-98% non condensing
Alarms:	Visual 360o full light bar, piercing 95db audible Low battery alarm User programmable alarms: Up to 4 alarms per toxic gas (incl. STEL / TWA) 3 alarms for O2 2 alarms for LEL
Display:	LCD backlight display
Datalogging:	Timed: 24 hours of timed logs at 1 log per minute Session: Minimum of 180 logs Calibration: 8 calibration logs
Sampling:	Maximum tubing length - 30 m / 98 ft. (Response times increase by approx. 1 second for every metre / 3 ft. of tubing used)
Battery:	NiMH rechargeable battery - 12 hr. minimum with pump Alkaline battery pack (3 AA) - 12 hr. minimum with pump
Enclosure:	High impact rubberised polycarbonate case
IP Rating:	IP65 (Dust tight and water resistant)
Approvals:	* UL 913 Class I, Div 1 Groups A,B,C,D MED (0038/YY) - Module B & E CE ATEX II 2 G EEx iad IIC T3 / T4
IECEx:	Ex iad IIC T4/T3
Warranty:	2 years

* Excludes NDIR sensor option.

Sample inlet nozzle

HIHI		20.9
LEL		02
000	000	0.0
PPM NH3	PPM CO	PPM VOC

Display in alarm conditions

Configurable calibration options

VOC target gas selection

Features

Automatic Bump Testing and Calibration

To provide accurate performance and results, the PS500 has to be properly used and maintained. The Auto Bump & Calibration Station (ABC) provides bump testing, calibration and data management options and is compact, robust and intuitive to use. Two versions of the ABC are available allowing either a single gas cylinder or up to three cylinders to be connected. Additionally, a special three cylinder version is available for reactive gases. The ABC is fully configurable and can operate in three distinct modes of operation:

Standalone

- No PC or network connection required
- Simple setup and configuration
- Results stored on ABC
- USB access for results extraction
- Settings App for easy printing of calibration certificates

PC

- PC / laptop connected to ABC
- Setup and configuration using flexiCal Plus software
- Results stored in the PC / laptop
- Easy access to all results
- Powerful data management / calibration certificate generation

Ethernet

- Multiple ABC's can be connected to a network
- Setup and configuration using IMS Settings software
- All results stored in the IMS database
- Easy access to all results
- Powerful data management / calibration certificate generation

Auto Bump & Calibration Station Technical Station

Size:	200 x 140 x 135mm (7.9" x 5.5" x 5.3")	
Weight:	Singe Gas - 1.2kg (43oz) Multi Gas - 1.35kg (48oz)	
Interfaces:	Standalone /USB /Ethernet	
LED Indicators:	Power (Green) /Testing (Orange) / Pass (Green) / Fail (Red)	
Testing Time:	Bump Test 150 secs Calibration Test 150 secs	
Data Storage:	Up to 6000 Bump & Calibration results	
Power Supply:	12V dc, 2A	
Operating Temperature:	-10°C to 40°C (14°F to 104°F)	
Gas Ports:	Single Gas - 3 (Air, Gas & Exhaust) Multi Gas - 5 (Air, Gas x 3 & Exhaust)	

PS500 Ordering information

Sensor Specification				
Gas	Ranges	Resolution	Sensor Type	T90
LEL	0 - 100% LEL	1% LEL	Cat-bead 15	
LEL	0 - 100% LEL	1% LEL	NDIR	35 sec
CO ₂	0 - 2.50%	0.01%		
CO_2	2.50 - 5.00%	0.05%	NDIR	25 sec
O ₂	0 - 25%	0.1%	Electrochemical	10 sec
СО	0 - 1000PPM	1 PPM	Electrochemical	35 sec
H_2S	0 - 100PPM	1 PPM	Electrochemical	25 sec
DUAL TOX CO/H ₂ S	0-1000PPM(CO) 0-100PPM(H ₂ S)	1 PPM	Electrochemical	35 sec & 25 sec
SO ₂	0 - 30PPM	1 PPM	Electrochemical	10 sec
30 ₂	0 - 100PPM	1 PPM	Electrochemical	10 sec
CL_2	0 - 10PPM	0.1PPM	Electrochemical	30 sec
NH_3	0 - 100PPM	1 PPM	Electrochemical	60 sec
NO	0 - 300PPM	1 PPM	Electrochemical	20 sec
NO_2	0 - 20PPM	O.1PPM	Electrochemical	185 sec
PH_3	0 - 100PPM	1 PPM	PID	5 sec
VOC	0 - 100PPM	0.1PPM	PID	5 sec
voc	0 - 1000PPM	1PPM	PID	5 sec
C [°] H°	0 - 20PPM	O.1PPM	PID	5 sec

Long duration battery pack and			
instrument with fast charge battery			
pack, charging in Fast Charger			
master / slave units.			

	Battery / Charger Accessories
66701	Long duration rechargeable battery pack
66702	Alkaline battery pack (3 x AA batteries)
66703	Fast charge rechargeable battery pack
66140	Standard charger - c/w universal plug (for 66701)
66200	5-way charger - c/w universal plug (for 66701)
66207	10-way charger - c/w universal plug (for 66701)
66206	Car/vehicle charger 12/24V (for 66701)
66513	Fast charger - c/w universal plug
66516	10-way fast charger master unit - c/w universal plug
66514	10-way fast charger slave unit - c/w universal plug
	Recommended Accessories / Spare Parts
66485	Recommended Accessories / Spare Parts Hydrophobic filter - external inline
66485	Hydrophobic filter - external inline
66485 66136	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector
66485 66136 66930	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector
66485 66136 66930 66028	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness
66485 66136 66930 66028 66017	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness Probe assembly
66485 66136 66930 66028 66017 61208	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness Probe assembly Datalogging package
66485 66136 66930 66028 66017 61208 61445	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness Probe assembly Datalogging package PS500 CAL - Calibration Package
66485 66136 66930 66028 66017 61208 61445 66083	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness Probe assembly Datalogging package PS500 CAL - Calibration Package Sensor grill hydrophobic filter
66485 66136 66930 66028 66017 61208 61445 66083 66084	Hydrophobic filter - external inline 3m sample line (Tygon® tubing) with connector 3m reactive gas tubing with connector Neck harness Probe assembly Datalogging package PS500 CAL - Calibration Package Sensor grill hydrophobic filter Sensor gas inlet filter

	Automatic Bump & Calibration		
61502	Auto Bump & Calibration Station - single gas connection (6mm fittings & incl. PSU & USB stick with Standalone software)		
61504	Auto Bump & Calibration Station - multi gas connections (4mm / 6mm fittings & incl. PSU & USB stick with Standalone software)		
61504R	Auto Bump & Calibration Station - multi gas connections (for reactive gases $\rm CL_2$ / $\rm NH_3)$		
99553	flexiCal Plus software for PC		
99118	Demand flow regulator		
64265	Tubing with 6mm push fit connection (for 61502)		
61540	600mm reactive gas tubing (for 61504R)		
64443	6mm Push fit Barbed Adaptor		
61536	4mm Push fit Barbed Adaptor (for 61504)		
Gas Kits for Automatic Bump & Calibration Station			
99146	Combi Test Gas Cylinder {2.5% CH ₄ , 500ppm CO, 50ppm H ₂ S, 18% O ₂ , balance N ₂ }		
64060	Test Gas Kit (Combi test gas 99146, demand flow regulator 99118 c/w 6mm tubina)		

As an ISO 9001 approved company, Gas Measurement Instruments quality assurance programes demand the continuous assessment and improvement of all GMI products. Information in this leaflet could thus change without notification and does not constitute a product specification. Please contact GMI or their representative if you require more details.

PROMAT (HK) Limited 寶時(香港)有限公司 ↓:2661 2392 ②:5196 8860 ⊠:info@promat.hk 霉: http://www.promat.hk

Appendix O

Exceedance Report(s)

Incident Report on Action Level or Limit Level Non-Compliance

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant			
Date	04 February 2022 (Lab result received on 11 February 2022)			
Time	08:00-11:04 (Mid-Flood) and 13:15-16:45 (Mid-Ebb)			
Mid-Flood				
Monitoring Location	WSR3	Clear Water Bay WSR33 WSR35 WSR36 WSR37 WSSR37 W		
Parameter	Suspended Solid (SS)	¢	Key N Klemetres 1 2	
Action & Limit Levels	Action Level	Limit Level		
Action & Linit Levels	> 6.2 mg/L	> 6.7 mg/L		
Measurement Level	Impact Station(s) of Exceedance 6.8 mg/L (WSR 3)	Control Stations 4.5 mg/L (CE) 5.2 mg/L (CF)	Impact Station(s) without Exceedance 5.7 mg/L (WSR1) 3.8 mg/L (WSR 2) 5.7 mg/L (WSR 4) 4.2 mg/L (WSR 4) 4.2 mg/L (WSR 16) 4.8 mg/L (WSR 33) 4.3 mg/L (WSR 36) 5.2 mg/L (WSR 37)	
Possible reason for Action or Limit Level Non-compliance				

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant			
Date	8 February 2022 (Lab result received on 14 February 2022)			
Time	09:42-13:12 (Mid-Flood) and 15:47-19:00 (Mid-Ebb)			
	Mid-Fl			
Monitoring Location	WSR33, WSR36			
	HONG KONG ISLAND Tai Tam Rig Wave Bay	Clear Water Bay	Key	
2		ČF 0	N Verse Colley Montering Station N Station and the tor Coalehython Plant Station and the tor Coalehython Plant Station and the tor Coalehython Plant 1 2	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	> 5.0 mg/L	> 6.0 mg/L		
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance	
	5.8 mg/L (WSR 33) 6.5 mg/L (WSR 36)	3.5 mg/L (CE) 3.3 mg/L (CF)	2.8 mg/L (WSR1) 3.1 mg/L (WSR 2) 3.2 mg/L (WSR 3) 3.3 mg/L (WSR 4) 3.3 mg/L (WSR 16) 4.5 mg/L (WSR 37)	
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting			
	Intake Shaft Area: marine con	nstruction activities, namely 1	.) N/A	
	Marine construction activities	s with contact with water: 1)	N/A	
	Marine vessels on 8 February 2022: • N/A (Intake Shaft) • Derrich heree v 1(Outfoll Shaft)			
	 Derrick barge x 1(Outfall Shaft) Dominating sea current direction was found to be from Southeast to Northwest at waters to the west side of Tit Cham Chau; and from Northeast to Southwest at waters to the east side of Tit Cham Chau. 			
	No marine construction activities were conducted at WSR36 on 8 February 2022. S exceedance was however observed at WSR36 (6.5mg/L). Although dewatering unpolluted ingress seawater in caisson were conducted at WSR37 (Outfall Shaft) on			

	February 2022, the SS level at WSR 37 (4.5mg/L) was lower than WSR36, where WSR36 was located upstream during mid-flood tide, which would be expected no cause by the dewatering of unpolluted ingress seawater in caisson at WSR37 (Outfall Shaft), WSR 33 was located upstream during mid-flood tide but the SS level at WSR33 (5.8 mg/L) was similar to that at WSR36 (6.5mg/L). The observed SS exceedance maybe caused by other natural factors.			
	According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 8 February 2022.			
	Conditions of the protective s February 2022.	silt curtain at th	ne inland water	outfall was satisfactory on 8
	Mid-H			
Monitoring Location	WSR16, WSR33, WSR36, W	VSR37		
	HONG KONG ISLAND		Clear Water Bay WSR33 WSR36 WSR4	
	Tai Tam	Wage	Tung Lung Chau	}
		CF	٥	Key Key Key Key Key Key Key Key
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
Measurement Level	> 8.2 mg/L Impact Station(s) of	Control Stati	> 8.9 mg/L	Impact Station(s) without
Weasurement Level	Exceedance	Control Stati	OIIS	Exceedance
	8.8 mg/L (WSR16) 14.2 mg/L (WSR 33) 8.7 mg/L (WSR 36) 9.3 mg/L (WSR 37)	6.8 mg/L (Cl 3.5 mg/L (Cl	F)	2.6 mg/L (WSR1) 6.7 mg/L (WSR 2) 4.0 mg/L (WSR 3) 7.0 mg/L (WSR 4)
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine c dewatering of unpolluted in shotcreting work inside the c	gress seawater aisson	in caisson 2)	plant mobilisation for later
	Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) N/A			
	 Marine vessels on 8 February N/A (Intake Shaft) Derrick barge x 1(Outfal Dominating sea current directo the west side of Tit Cham Tit Cham Chau. 	y 2022: 1 Shaft) tion was found	to be from Nor	thwest to Southeast at waters

	 Station WSR16 was located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR16 (8.8 mg/L). According to the construction work schedule provided by Main Contractor, dewatering of unpolluted ingress seawater in caisson was conducted at WSR37 (Outfall Shaft), however as no marine construction work was conducted at Outfall Shaft, it would be expected that the dewatering of unpolluted ingress seawater in caisson would generate limited SS of this activity. No marine construction activity was schedule at WSR36 (Intake Shaft) on 8 February 2022 but the SS exceedance was observed (8.7mg/L), as the exceedance of SS level at WSR37 would be expected no cause by the dewatering of unpolluted ingress seawater in caisson, in view of that the exceedance of SS level at WSR36 is concluded not project related. WSR36 and WSR37 was located upstream during mid-ebb tide but the SS level at WSR33 (14.2mg/L) was higher than WSR36 (8.7mg/L) and WSR37 (9.3mg/L), where the dewatering of unpolluted ingress seawater in caisson were conducted. The observed SS exceedance maybe caused by other natural factors. According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 8 February 2022.
	February 2022.
Remarks	Current direction during mid-flood sampling on 8 February 2022: FSTATE 將軍澳工業邨 Po Toi O CHUEN 市袋澳村 TEI TONG TENG 地堂頂 TIT CHAM CHAU 鐵麥洲
	イ K Tung Lung Chau 東陽洲 TATHONG POINT 南堂尾

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant				
Date	10 February 2022 (Lab result received on 17 February 2022)				
Time	08:12-11:42 (Mid-Flood) and 18:17-19:00 (Mid-Ebb)				
Mid-Flood					
Monitoring Location	WSR1, WSR2, WSR3, WSR				
	HONG KONG ISLAND Tai Tam Big Wore Bay	WSR37 WSR37 NF3 NF3	Clear Water Bay		Koy Warr Quality Monitoring Station Emanuted Stits for DataButsion Pilet Management Frage Study area for algo minipation works Individual State for DataButsion Pilet Management Frage
		CF	0	Kilometres 1 2	Indicative Location of Submarine Outfa
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level	Ι	Limit Level		
	> 5.2 mg/L	>	> 6.0 mg/L		
Measurement Level	Impact Station(s) of Exceedance	Control Station	U U	Impact Sta Exceedanc	tion(s) without
	9.2 mg/L (WSR1)	3.7 mg/L (CE))	4.3 mg/L (WSR 4)
	6.5 mg/L (WSR 2)	4.3 mg/L (CF)		3.4 mg/L (
	6.8 mg/L (WSR 3)			2.6 mg/L (
	5.6 mg/L (WSR 33)			2.8 mg/L (,
				(
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine c dewatering of unpolluted ing for later shotcreting work ins	ress seawater in	•		
	Intake Shaft Area: marine con	nstruction activit	ties, namely 1) N/A	
	Marine construction activities with contact with water: 1) N/A				
	Marine vessels on 10 February 2022:				
	• N/A (Intake Shaft)				
	 Derrick barge x 1(Outfall Shaft) 				
	Dominating sea current direction was found to be from Southeast to Northwest at waters to the west side of Tit Cham Chau; and from Northeast to Southwest at waters to the east side of Tit Cham Chau.				
	Station WSR1, WSR2 and WSR3 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedances were however observed at WSR1 (9.2mg/L), WSR2 (6.5mg/L) and WSR3 (6.8mg/L).				

	According to the construction work schedule provided by Main Contractor, no marine activity was conducted at Intake and Outfall shafts, only dewatering of unpolluted ingress seawater in caisson with contact with water was conducted at Outfall shaft on 10 February 2022. The SS level at upstream station WSR33 (5.6mg/L) was higher than WSR36 (2.6mg/L) and WSR37 (2.8mg/L), where the dewatering of unpolluted ingress seawater in caisson at WSR37 (Outfall shaft) on 10 February 2022. No SS exceedance were observed at WSR36 and WSR37. In view of the inverse relation between distance to marine works and SS level, the SS exceedance is concluded not project related. According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 10 February 2022.		
Monitoring Location	WSR3, WSR33, WSR37	-Ebb	
	HONG KONG ISLAND Tai Tam	Clear Water Bay	Korrsens Korrsens 1 2
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Le	avel
	> 5.0 mg/L	> 6.0 mg	
Measurement Level	Impact Station(s) of Exceedance 6.9 mg/L (WSR 3) 5.8 mg/L (WSR 33) 5.3 mg/L (WSR 37)	Control Stations 2.9 mg/L (CE) 3.1 mg/L (CF)	Impact Station(s) without Exceedance3.3 mg/L (WSR1) 2.6 mg/L (WSR 2) 3.1 mg/L (WSR 4) 4.1 mg/L (WSR16) 4.8 mg/L (WSR 36)
Possible reason for Action or Limit Level Non-compliance		ngress seawater in caisson nside the caisson. construction activities, nan ies with contact with wate nary 2022:	•

	 Dominating sea current direction was found to be from Northwest to Southeast at waters to the west side of Tit Cham Chau; and from West to East at waters to the east side of Tit Cham Chau. Station WSR3 was located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR3 (6.9mg/L). According to the construction work schedule provided by Main Contractor, dewatering of unpolluted ingress seawater in caisson was conducted at WSR37 (Outfall Shaft), however no marine construction work was conducted at Outfall Shaft, it would be expected that the dewatering of unpolluted ingress seawater in caisson would generate limited SS of this activity. No marine construction activity was schedule at WSR36 (Intake Shaft) on10 February 2022 but SS exceedance was observed at WSR33, the SS level at an upstream station WSR36 (4.8mg/L) was lower than WSR33 (5.8mg/L), where dewatering of unpolluted ingress seawater in caisson was conducted at WSR37. In view of the inverse relation between distance to marine works and SS level, the SS exceedance is concluded not project related. According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 10 February 2022.
Remarks	Current direction during mid-flood sampling on 10 February 2022:
	FAT TONG O 佛堂演 IN IN ITC HAM CHAU 鏡麥洲
	イ T NAM TONG K 南京 K K
	TATHONG POINT 市室尾

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant			
Date	12 February 2022 (Lab result received on 19 February 2022)			
Time	08:12-11:42 (Mid-Flood) and 18:17-19:00 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	WSR2			
	HONG KONG ISLAND Tai Tam Bir Have Boy	Clear Water Bay	Key Main Control of Main Cont	
Parameter	Suspended Solid (SS)	¢.	N Kionetres 2 Indicative Location of Skotmanine Outral	
Action & Limit Levels	Action Level	Limit Level		
	> 12.4 mg/L	> 13.4 mg/L		
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance	
	17.0 mg/L (WSR 2) 10.3 mg/L (CE) 3.3 mg/L (CF)		6.3 mg/L (WSR1) 12.3 mg/L (WSR 3) 4.0 mg/L (WSR 4) 5.7 mg/L (WSR 16) 3.2 mg/L (WSR 33) 7.2 mg/L (WSR 36) 2.5 mg/L (WSR 37)	
Possible reason for Action or Limit Level Non-compliance	r Outfall Shaft Area: marine construction activities, namely 1) derrick barge suppor			
	Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work in caisson.			
	 Marine vessels on 12 Februar N/A (Intake Shaft) N/A (Outfall Shaft) 	ry 2022:		
	-	tion was found to be from Nor Chau; and from West to East		

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant			
Date	15 February 2022 (Lab result received on 22 February 2022)			
Time	14:03-17:33 (Mid-Flood) and 09:15-12:21 (Mid-Ebb)			
	Mid-Fl			
Monitoring Location	WSR4, WSR33, WSR36			
	HONG KONG ISLAND Tai Tam Big Nive Bay	Clear Water Bay	Image: Second	
		0	Kilometres 1 2 Indicative Location of Submarine Outfal	
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level	Limit Level		
	> 5.0 mg/L	> 6.0 mg/L		
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance	
	6.3 mg/L (WSR 4)	3.1 mg/L (CE)	3.2 mg/L (WSR1)	
	7.3 mg/L (WSR 33)	3.3 mg/L (CF)	2.8 mg/L (WSR 2)	
	8.3 mg/L (WSR 36)		4.7 mg/L (WSR 3)	
			3.2 mg/L (WSR 16)	
			3.1 mg/L (WSR 37)	
Possible reason for Action or Limit Level Non-compliance	dewatering of unpolluted ing		ock breaking work inside the	
	Intake Shaft Area: marine construction activities, namely 1) N/A			
	Marine construction activities with contact with water: 1) rock breaking work inside the caisson.			
	 Marine vessels on 15 February 2022: N/A (Intake Shaft) Derrick barge x 1; mini-backhoe x1; (Outfall Shaft) 			
		tion was found to be from Sou Chau; and from Northeast to		

	Station WSR4 was located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR4 (6.3 mg/L). No marine construction works was conducted at WSR36 (Intake Shaft). SS exceedances were observed at WSR33 (7.3mg/L) and WSR 36 (8.3mg/L). Although marine construction works with contact with water was noted at WSR37 (Outfall Shaft), however no SS exceedance was recorded at WSR37 (3.1mg/L). WSR 33 and WSR 36 were located upstream during mid-flood tide but SS exceedances were observed and higher than the downstream station WSR37, where marine construction works with contact with water were conducted. In view of the inverse relation between distance to marine construction works and SS level, the SS exceedance is concluded non-project related.			
Monitoring Location	Mid- WSR4	EDD		
	HONG KONG ISLAND Tai Tam Big Were Boy	WSH37 NFT NFT NFT NFT NFT NFT NFT NFT NFT NFT NFT NFT	Clear Warsa WSR36	Image: State of the state
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	> 8.2 mg/L		> 8.9 mg/L	
Measurement Level	Impact Station(s) of Exceedance 13.3 mg/L (WSR 4)	Control Stati 6.8 mg/L (Cl 15.2 mg/L (C	E)	Impact Station(s) without Exceedance 6.0 mg/L (WSR1) 4.3 mg/L (WSR 2) 4.8 mg/L (WSR 3) 4.0 mg/L (WSR 3) 4.0 mg/L (WSR 33) 5.2 mg/L (WSR 36) 4.0 mg/L (WSR 37)
Possible reason for Action or Limit Level Non-compliance		gress seawater tely enclosing tl	in caisson 2) ro he caisson in pla	1) derrick barge supporting ck breaking work inside the ace.

Marine construction activities with contact with water: 1) rock breaking work inside the caisson.		
 Marine vessels on 15 February 2022: N/A (Intake Shaft) 		
• Derrick barge x 1; mini-backhoe x1; (Outfall Shaft)		
Dominating sea current direction was found to be from Northwest to Southeast at waters to the west side of Tit Cham Chau; and from West to East at waters to the east side of Tit Cham Chau.		
Station WSR4 was located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR4 (13.3mg/L). No SS exceedance were noted at WSR36 (5.2mg/L) and WSR37 (4.0mg/L), where marine construction activities were conducted at WSR37 (Outfall Shaft). In view of the inverse relation between distance to marine construction works and SS level, the SS exceedance is concluded not project related.		
According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 15 February 2022.		
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 15 February 2022.		
Current direction during mid-flood sampling on 15 February 2022:		

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant				n Plant
Date	17 February 2022 (Lab result received on 23 February 2022)				
Time	15:53-19:00 (Mid-Flood) and 10:16-13:46 (Mid-Ebb)				
	Mid-Fl				
Monitoring Location	WSR1, WSR2, WSR3, WSR		SR33, WSR36,	WSR37	
	HONG KONG ISLAND Tai Tam	en NE NE	Clear Water Bay	A Norderes	Key Marca Carly Monitoring Stilling Simular Variation (Stilling) Simular Variation (St
			0	Kilomeres 1 2	2 Indicative Location of Submarine Outfel
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	> 5.8 mg/L		> 6.3 mg/L		
Measurement Level	Impact Station(s) of	Control Stati	ons	Impact St	ation(s) without
	Exceedance			Exceedance	
	7.3 mg/L (WSR1)	7.8 mg/L (CI	E)		
	14.8 mg/L (WSR2)	4.8 mg/L (CI	F)		
	13.7 mg/L (WSR3)				
	16.7 mg/L (WSR4)				
	15.8 mg/L (WSR16)				
	10.3 mg/L (WSR33)				
	6.0 mg/L (WSR36)				
	8.0 mg/L (WSR37)				
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting dewatering of unpolluted ingress seawater in caisson 2) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson in place 3) tug boat assisted material transport from CEDD pier. Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson Marine vessels on 17 February 2022:		g work inside the sug boat assisted		
	N/A (Intake Shaft)Derrick barge x 1; mini-b	oackhoe x 1 ins	ide the caisson	; tug boat x	1 (Outfall Shaft)

Dominating sea current direction was found to be from Southeast to Northwest at waters to the west side of Tit Cham Chau; and from Northeast to Southwest at waters to the east side of Tit Cham Chau.
Station WSR1, WSR2, WSR3 WSR4 and WSR16 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedances were however observed at WSR1 (7.3mg/L), WSR2 (14.8mg/L), WSR3 (13.7mg/L), WSR4(16.7mg/L) and WSR16 (15.8mg/L).
According to the construction work schedule provided by Main Contractor, marine construction works were conducted at WSR37 (Outfall Shaft). No marine construction work was conducted at WSR36 (Intake Shaft) as referring to construction works schedule provided by Contractor. SS exceedance was observed at WSR36 (6.0mg/L) WSR37 (8.0mg/L).
According to Hong Kong Observatory Daily Rainfall record on 17 February 2022, rainfall was recorded at Tseung Kwon O, the rainfall may lead to release of SS content form the soil of the nearby lands (e.g. Country park, fill bank). The SS data during mid-flood tide suggested unstable weather conditions may be the dominating factors of elevated SS value of which all monitoring have exceeded the Action and Limit Level on 17 February 2022.
According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 17 February 2022.
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 17 February 2022.

Mid-Ebb			
Monitoring Location	WSR2, WSR3, WSR4, WSR16		
	HONG KONG ISLAND Tai Tam	Clear Water Bay	
		CF 0	N Study area for stope mitigation works Indicative Location of Seawater Intake
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Level	
	> 18.0 mg/L	> 19.5 mg/L	
Measurement Level	Impact Station(s) of Exceedance 19.8 mg/L (WSR2) 18.5 mg/L (WSR3) 19.3 mg/L (WSR4)	Control Stations 15.0 mg/L (CE) 18.0 mg/L (CF)	Impact Station(s) without Exceedance 17.0 mg/L (WSR1) 11.2 mg/L (WSR33) 13.3 mg/L (WSR36)
Possible reason for Action or	18.3 mg/L (WSR16) 10.2 mg/L (WSR37) Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting		
Limit Level Non-compliance	dewatering of unpolluted ingress seawater in caisson 2) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson in place 3) tug boat assisted material transport from CEDD pier.		
	Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work inside the		
	caisson. Silt curtain completely enclosing the caisson		
	 Marine vessels on 17 February 2022: N/A (Intake Shaft) Derrick barge x 1; mini-backhoe x 1 inside the caisson; tug boat x 1(Outfall Shaft) 		
	Dominating sea current direction was found to be from Northwest to Southeast at waters to the west side of Tit Cham Chau; and from West to East at waters to the east side of Tit Cham Chau.		
	Station WSR2, WS3, WSR4 and WSR16 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR2 (19.8mg/L), WSR3 (18.5mg/L), WSR4 (19.3mg/L) and WSR16 (18.3mg/L).		
According to the construction work schedule provided by Main Contracted construction works were conducted at WSR37 (Outfall Shaft). No marine construction works were conducted at WSR37 (Outfall Shaft).			-

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant		
Date	19 February 2022 (Lab result received on 25 February 2022)		
Time	08:00-12:12 (Mid-Flood) and 17:32-19:00 (Mid-Ebb)		
	Mid-Flood		
Monitoring Location	WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37		
	HONG KONG ISLAND Tai Tam	Clear Water Bay	
Parameter	Suspended Solid (SS)	¢	Kilometres 2 I 2 I Elementario di tic lo Cesalination Plant Construes I 2 I diciativo Location of Selemetar I Italia Indicativo Location of Italia Indicativo Location of Italia Indicativo Location o
	Suspended Solid (SS)	T :	
Action & Limit Levels	Action Level > 5.4 mg/L	Limit Level > 6.0 mg/L	
Measurement Level	Impact Station(s) of Exceedance 7.0 mg/L (WSR2) 5.8 mg/L (WSR3) 10.2 mg/L (WSR4) 6.8 mg/L (WSR4) 6.2 mg/L (WSR33) 9.2 mg/L (WSR36) 10.9 mg/L (WSR37)	Control Stations 4.2 mg/L (CE) 4.5 mg/L (CF)	Impact Station(s) without Exceedance 4.2 mg/L (WSR1)
Possible reason for Action or Limit Level Non-compliance	 Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting dewatering of unpolluted ingress seawater in caisson 2) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work inside the caisson. Marine vessels on 19 February 2022: N/A (Intake Shaft) Derrick barge x 1; mini-backhoe x 1 inside the caisson; tug boat x 1 (Outfall Shaft) Dominating sea current direction was found to be from Southeast to Northwest at waters to the west side of Tit Cham Chau; and from Northeast to Southwest at waters to the east side of Tit Cham Chau. 		

Station WSR2, WSR3, WSR4 and WSR16 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedances were however observed at WSR2 (7.0mg/L), WSR3 (5.8mg/L), WSR4(10.2mg/L) and WSR16 (6.8mg/L).
According to the construction work schedule provided by Main Contractor, marine construction works were conducted at WSR37 (Outfall Shaft). No marine construction work was conducted at WSR36 (Intake Shaft) as referring to construction work schedule provided by Contractor. SS exceedance was observed at WSR36 (9.2mg/L) and WSR37 (10.9mg/L).
According to Hong Kong Observatory Daily Rainfall record on 19 February 2022, rainfall was recorded at Tseung Kwon O, the rainfall may lead to release of SS content form the soil of the nearby lands (e.g. Country park, fill bank). The SS data during mid-flood tide suggested unstable weather conditions may be the dominating factors of elevated SS values of which monitoring stations WSR2, WSR3 WSR4, WSR16, WSR33, WSR36 and WSR37 have exceeded the Action and Limit Level on 19 February 2022.
According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 19 February 2022.
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 19 February 2022.

Mid-Ebb			
Monitoring Location	WSR2, WSR4, WSR16, WSR36		
	HONG KONG ISLAND Tai Tam	Clear Water Bay	Key Mur Cusky Votatring Strain
		CF	N Kilometres
Parameter	Suspended Solid (SS)	U U	Z Anuative Location of deamsime Cutty
Action & Limit Levels	Action Level	Limit Leve	1
Action & Linit Levels	> 5.4 mg/L	> 6.0 mg/L	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without
Wedstrement Lever	Exceedance	Control Stations	Exceedance
	6.0 mg/L (WSR2)	4.5 mg/L (CE)	17.0 mg/L (WSR1)
	18.5 mg/L (WSR4)	5.7 mg/L (CF)	11.2 mg/L (WSR3)
	19.3 mg/L (WSR16)		13.3 mg/L (WSR33)
	18.3 mg/L (WSR36)		10.2 mg/L (WSR37)
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting dewatering of unpolluted ingress seawater in caisson 2) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work inside the caisson.		
	 Marine vessels on 19 February 2022: N/A (Intake Shaft) Derrick barge x 1; mini-backhoe x 1 inside the caisson; tug boat x 1(Outfall Shaft) Dominating sea current direction was found to be from Northwest to Southeast at waters to the west side of Tit Cham Chau; and from West to East at waters to the east side of Tit Cham Chau. Station WSR2, WSR4 and WSR16 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedance was however observed at WSR2 (6.0mg/L), WSR4 (18.5mg/L) and WSR16 (19.3mg/L). 		
	According to the construction work schedule provided by Main Contractor, marine construction works were conducted at WSR37 (Outfall Shaft). No marine construction		

Page 10 of 10

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant		
Date	22 February 2022 (Lab result received on 28 February 2022)		
Time	08:18-11:48 (Mid-Flood) and 14:32-18:02 (Mid-Ebb)		
Monitoring Location	Mid-ebb WSR2, WSR3, WSR4, WSR16, WSR36, WSR37 Clear Water Bay Hong Kong IsLand Tai Tam		
Parameter	Suspended Solid (SS)	دیری) ه	Key Water Quality Monitoring Station isometries t Kilonneitres t 2
Action & Limit Levels	Action Level	Limit Level	
	> 6.2 mg/L	> 6.7 mg/L	
Measurement Level	Impact Station(s) of Exceedance 9.2 mg/L (WSR2) 14.3 mg/L (WSR3) 8.8 mg/L (WSR4) 8.7 mg/L (WSR46) 7.7 mg/L (WSR36) 7.2 mg/L (WSR37)	Control Stations 5.2 mg/L (CE) 7.8 mg/L (CF)	Impact Station(s) without Exceedance 5.3 mg/L (WSR1) 4.5 mg/L (WSR33)
Possible reason for Action or Limit Level Non-compliance	 Outfall Shaft Area: marine construction activities, namely 1) derrick barge supporting dewatering of unpolluted ingress seawater in caisson 2) rock breaking work inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) rock breaking work inside the caisson. Marine vessels on 22 February 2022: N/A (Intake Shaft) Derrick barge x 1; mini-backhoe x 1 inside the caisson; tug boat x 1 (Outfall Shaft) Dominating sea current direction was found to be from Northwest to Southeast at waters to the west side of Tit Cham Chau; and from Southwest to Northeast at waters to the east side of Tit Cham Chau. 		

Station WSR2, WSR3, WSR4 and WSR16 were located distant from the construction site and the possibility of being affected by marine construction activities was considered limited. SS exceedances were however observed at WSR2 (9.2mg/L), WSR3 (14.3mg/L), WSR4(8.8mg/L) and WSR16 (8.7mg/L).
According to the construction work schedule provided by Main Contractor, marine construction works were conducted at WSR37 (Outfall Shaft). No marine construction work was conducted at WSR36 (Intake Shaft) as referring to construction work schedule provided by Contractor. SS exceedances were observed at WSR36 (7.7mg/L) and WSR37 (7.2mg/L).
According to Hong Kong Observatory Daily Rainfall record on 22 February 2022, rainfall was recorded at Tseung Kwon O, the rainfall may lead to release of SS content form the soil of the nearby lands (e.g. Country park, fill bank). The SS data during midebb tide suggested unstable weather conditions may be the dominating factors of elevated SS values of which monitoring stations WSR2, WSR3 WSR4, WSR16, WSR36 and WSR37 have exceeded the Action and Limit Level on 22 February 2022.
According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 22 February 2022.
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 22 February 2022.

Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant		
Date	24 February 2022 (Lab result received on 2 March 2022)		
Time	09:48-13:18 (Mid-Flood) and 15:27-18:57 (Mid-Ebb)		
	Mid-e		
Monitoring Location	WSR4, WSR16, WSR33, WSR36		
	HONG KONG ISLAND Tai Tam	Clear Water Bay	Ky Wir Quality Montering Station Einmanned State for Eradination Filer
P		CF CF	N Klonerse 1
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level	Limit Level	
Magazine mant Laural	> 5.6 mg/L	> 6.1 mg/L	Lungs at Station (a) with out
Measurement Level	Impact Station(s) of Exceedance	Control Stations	Impact Station(s) without Exceedance
	6.8 mg/L (WSR4) 5.7 mg/L (WSR16)	4.2 mg/L (CE) 4.3 mg/L (CF)	4.7 mg/L (WSR1) 4.2 mg/L (WSR2)
	5.8 mg/L (WSR33)		4.8 mg/L (WSR3)
	6.5 mg/L (WSR36)		5.0 mg/L (WSR37)
Possible reason for Action or Limit Level Non-compliance	Outfall Shaft Area: marine construction activities, namely 1) derrick barge assisted material unloading, no dewatering because pump line failure, awaiting repair 2) tug boat for material transport		
	Intake Shaft Area: marine con	nstruction activity, namely 1)	N/A
	 Marine construction activities with contact with water: 1) N/A Marine vessels on 24 February 2022: N/A (Intake Shaft) 		
	• Derrick barge x 1; tug boat x 1 (Outfall Shaft)		
	Dominating sea current direction was found to be from Northwest to Southeast at water to the west side of Tit Cham Chau; and from West to East at waters to the east side of Tit Cham Chau.		
Stations WSR4 and WSR16 were located distant from the construction possibility of being affected by marine construction activities were considered as the second se		ties were considered limited.	

According to the construction work schedule provided by Main Contractor, no marine construction work with contact with water were conducted at WSR36 (Intake Shaft) and WSR37 (Outfall Shaft). SS exceedances were observed at WSR36 (6.5mg/L). Hence, the observed SS exceedances at WSR36 (6.5mg/L) and WSR33 (5.8mg/L) maybe caused by other natural factors.
According to the field observation by sampling team during sampling event, no silt plume was observed at the Contract site on 24 February 2022.
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 24 February 2022.

ExceedanceExceedance5.2 mg/L (WSR33)4.2 mg/L (CE)4.3 mg/L (WSR1)5.5 mg/L (WSR36)4.3 mg/L (CF)3.5 mg/L (WSR2)4.8 mg/L (WSR36)4.3 mg/L (CF)4.8 mg/L (WSR3)4.0 mg/L (WSR4)4.0 mg/L (WSR4)4.0 mg/L (WSR37)4.2 mg/L (WSR37)Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t mobilize materials preparing for Blinding layer concreting 2) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in placeIntake Shaft Area: marine construction activities with contact with water: 1) Derrick barge assisted t	Project	Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant		
Mid-ebb Monitoring Location WSR33, WSR36 WSR33, WSR36 Impact Station (s) of the second sec				
Monitoring Location WSR33, WSR36 We core serve Image: Suspended Solid (SS) Parameter Suspended Solid (SS) Action & Limit Levels Action Level > 5.0 mg/L > 6.0 mg/L Image: Station(s) of Exceedance Song/L 5.2 mg/L (WSR33) 4.2 mg/L (CE) 5.5 mg/L (WSR36) 4.3 mg/L (CF) 4.3 mg/L (WSR4) 4.0 mg/L (WSR4) 4.0 mg/L (WSR37) 4.2 mg/L (CE) Possible reason for Action or Limit Level Holding layer concreting 2) Derrick barge assisted to concrete the Blinding layer inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted to concrete the Blinding layer inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted to concrete the Blinding layer inside the caisson. Silt curtain completely enclosing the caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine vessels on 26 February 2022: • N/A (Intake Shaft)	Time			
Parameter Suspended Solid (SS) Action & Limit Levels Action Level > 5.0 mg/L Suspended Solid (SS) Action & Limit Levels Action Level > 5.0 mg/L Suspended Solid (SS) Measurement Level Impact Station(s) of Exceedance 5.2 mg/L Suspended Solid (SS) Measurement Level Impact Station(s) of Exceedance 5.2 mg/L (WSR33) 4.3 mg/L (CE) 4.3 mg/L (WSR1) 3.5 mg/L (WSR36) 4.3 mg/L (CF) 4.3 mg/L (WSR37) 4.3 mg/L (WSR37) 4.3 mg/L (WSR36) 4.3 mg/L (WSR37) Possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted 1 concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted 1 concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activities, namely 1) N/A Marine vessels on 26 February 2022: N/A (Intake Shaft)				
Parameter Suspended Solid (SS) Action & Limit Levels Action Level Action & Limit Levels Action Level Measurement Level Impact Station(s) of Exceedance 5.0 mg/L > 6.0 mg/L 5.5 mg/L (WSR3) 4.2 mg/L (CE) 4.3 mg/L (WSR1) 3.5 mg/L (WSR36) 4.3 mg/L (CF) 4.3 mg/L (WSR37) Possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Natine vessels on 26 February 2022: N/A (Intake Shaft)	Monitoring Location	WSR33, WSR36		
Parameter Suspended Solid (SS) Action & Limit Levels Action Level > 5.0 mg/L > 6.0 mg/L Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 5.5 mg/L (WSR33) 4.2 mg/L (CE) 3.5 mg/L (WSR1) 5.5 mg/L (WSR36) 4.3 mg/L (CF) 4.8 mg/L (WSR3) 4.5 mg/L (WSR37) 4.2 mg/L (CF) 4.8 mg/L (WSR37) Possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activities, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine vessels on 26 February 2022: • N/A (Intake Shaft)		HONG KONG ISLAND		
Action & Limit Levels Action Level Limit Level Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 5.2 mg/L (WSR33) 4.2 mg/L (CE) 4.3 mg/L (WSR1) 5.5 mg/L (WSR36) 4.3 mg/L (CF) 3.5 mg/L (WSR3) 4.5 mg/L (WSR37) 4.3 mg/L (CF) 3.5 mg/L (WSR3) 9 possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine vessels on 26 February 2022: N/A (Intake Shaft)	Descaration		Lung	Water Quality Monitoring Station
> 5.0 mg/L > 6.0 mg/L Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 5.2 mg/L (WSR33) 4.2 mg/L (CE) 4.3 mg/L (WSR1) 5.5 mg/L (WSR36) 4.3 mg/L (CF) 4.3 mg/L (WSR2) 4.8 mg/L (WSR36) 4.3 mg/L (WSR3) 4.5 mg/L (WSR3) 9 Possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine vessels on 26 February 2022: • N/A (Intake Shaft)		1		
Measurement Level Impact Station(s) of Exceedance Control Stations Impact Station(s) without Exceedance 5.2 mg/L (WSR33) 4.2 mg/L (CE) 4.3 mg/L (WSR1) 5.5 mg/L (WSR36) 4.3 mg/L (CF) 3.5 mg/L (WSR2) 4.8 mg/L (WSR3) 4.5 mg/L (WSR3) 4.2 mg/L (CF) 4.3 mg/L (WSR2) 4.8 mg/L (WSR3) 4.5 mg/L (WSR3) 4.2 mg/L (WSR37) 4.0 mg/L (WSR4) 4.0 mg/L (WSR37) 4.0 mg/L (WSR37) Possible reason for Action or Limit Level Non-compliance Outfall Shaft Area: marine construction activities, namely 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Intake Shaft Area: marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in place Marine vessels on 26 February 2022: • N/A (Intake Shaft)	Action & Limit Levels			
Limit Level Non-compliancemobilize materials preparing for Blinding layer concreting 2) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in placeIntake Shaft Area: marine construction activity, namely 1) N/AMarine construction activities with contact with water: 1) Derrick barge assisted t concrete the Blinding layer inside the caisson. Silt curtain completely enclosing th caisson in placeMarine vessels on 26 February 2022: • N/A (Intake Shaft)	Measurement Level	Impact Station(s) of Exceedance 5.2 mg/L (WSR33)	Control Stations 4.2 mg/L (CE)	4.3 mg/L (WSR1) 3.5 mg/L (WSR2) 4.8 mg/L (WSR3) 4.5 mg/L (WSR4) 4.0 mg/L (WSR16)
Dominating sea current direction was found to be from Northwest to Southeast at water to the west side of Tit Cham Chau; and from West to East at waters to the east side of		 Intake Shaft Area: marine construction activity, namely 1) N/A Marine construction activities with contact with water: 1) Derrick barge assisted to concrete the Blinding layer inside the caisson. Silt curtain completely enclosing the caisson in place Marine vessels on 26 February 2022: N/A (Intake Shaft) Derrick barge x 1 (Outfall Shaft) Dominating sea current direction was found to be from Northwest to Southeast at waters 		

According to the construction work schedule provided by Main Contractor, no marine construction work with contact with water was conducted at WSR36 (Intake Shaft) on 26 February 2022. SS exceedances were observed at WSR36 (5.5mg/L). Although concrete the Blinding layer inside the caisson was conducted at WSR37 (Outfall shaft) on 26 February 2022, the SS level at WSR37 (4.2mg/L) was lower than WSR36 (5.5mg/L), where WSR36 was located downstream during mid-ebb tide, which would be expected no cause of SS exceedance by the construction works at WSR37 (Outfall Shaft). WSR33 was also located downstream during mid-ebb tide, but the SS level at WSR33 (5.2mg/L) was similar to that at WSR36 (5.5mg/L). the observed SS exceedances maybe caused by other natural factors.
Conditions of the protective silt curtain at the inland water outfall was satisfactory on 26 February 2022.

